Advertisement

Van Vleck Paramagnets in High Magnetic Fields

  • E. Leyarovski
  • L. Leyarovska
  • Chr. Popov
  • N. Iliev

Abstract

As a result of the crystal-field splitting of the lowest multiplet, the electronic ground state of the even 4f-rare-earth ions in many compounds is a nonmagnetic singlet, the excited states being raised by more than 10 K or even 100 K in energy by the crystalline field. Because of the very strong hyperfine coupling between electrons and nuclei in Van Vleck compounds, there is a profound influence of the magnetic field on both the electronic and nuclear low-lying energy level schemes. Besides inducing a large hyperfine enhanced magnetic moment by admixing the excited electronic states into the singlet ground state (SGS) wave function, an external magnetic field also gives rise to an additional electric field gradient which results from the 4f-charge cloud of the rare-earth ion, no matter what the crystal symmetry is. Even in cubic symmetry, a field-induced nuclear quadrupole splitting will be superimposed on the hyperfine pseudo-Zeeman splitting. Experimental evidence for this and some other effects may come from accurate measurements of the hyperfine specific heat of Van Vleck paramagnets in sufficiently high magnetic fields.

Keywords

Crystal Field High Magnetic Field Quadrupole Interaction Singlet Ground State Nuclear Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See B.R. Cooper in “Critical Reviews in Solid State Sciences”, D. Schuele and R. Hoffman, eds., CRC Press, Ckeveland, Ohio (1972), Vol. 3, p. 83Google Scholar
  2. B. Bleaney in “Magnetic properties of Rare-Earth Metals“, R.J. Elliot, ed., Plenun press,London (1972), Ch. 8, p. 383.Google Scholar
  3. 2.
    B. Bleaney, Physica 69, 317 (1973).ADSCrossRefGoogle Scholar
  4. 3.
    A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of Transition Ions”, Clarendon Press, Oxford (1970),, App. A.Google Scholar
  5. 4.
    B. Bleaney and R.W. Hill, Proc. Phys Soc. (London), LXXVIII, 313 (1961).Google Scholar
  6. 5.
    R.J. Elliot and K.W.H. Stevens, Proc. Roy. Sic. A218, 553 (1953)ADSCrossRefGoogle Scholar
  7. B. Bleaney, J. Appl. Phys. 34, 1024 (1963).ADSCrossRefGoogle Scholar
  8. 6.
    R. Hunik, F. Nijhoff and W.J. Huniskanp, Physica 101B, 70 (1980).Google Scholar
  9. 7.
    K.R. Lea, M.J. Leask and W.P. Wolf, J. Phys. Chem. Sol. 23, 1381 (1962).ADSCrossRefGoogle Scholar
  10. 8.
    W. Gross, K. Knorr, A.P. Murani and K.H.J. Buschow in “Crystal Field Effects in Metals and Alloys”, A. Furrer, ed., Plenum Press, N.Y. (1977), p. 37.CrossRefGoogle Scholar
  11. 9.
    D. Davidov, V. Zevin, R. Levin, D. Shaltiel and K. Barberschke, Phys. Rev. B15, 2771 (1977).ADSCrossRefGoogle Scholar
  12. 10.
    T. Murao, J. Phys. Soc. Japan 39, 50, 1629 (1975); 46, 40 (1979).Google Scholar
  13. 11.
    J.L. Genicon and R. Tournier, Phys. Rev.. Lett. 36, 107 (1976).ADSCrossRefGoogle Scholar
  14. 12.
    E. Leyarovski, L. Leyarovska and Chr. Popov in “Proceedings of the Eighth International Cryogenic Engineering Conference”, C. Rizzuto, ed., IPC Science and Technology Press, Guilford (1980), p. 466.Google Scholar
  15. 13.
    K. Andres and S. Darak, Phys. Rev. B10, 1967 (1974); K. Andres, E. Bucher, P.H. Schmidt, J.P. Malta and S. Darack, Phys. Rev. B11, 4634 (1975); B.R. Cooper, Phys. Rev. 163, 444 (1967).Google Scholar
  16. 14.
    K.A. McEwen in “Handbook on the Physics and Chemistry of Rare-Earths”, K.A. Gschneidner Jr., ed., North-Holland, Amsterdam (1978), Ch. 6, p. 411.Google Scholar
  17. 15.
    J. Jensen, J. de Physique 40, C5, 1 (1979).Google Scholar
  18. 16.
    K.A. McEwen and W.G. Stirling, J. Phys. C14, 157 (1981).MathSciNetADSGoogle Scholar
  19. 17.
    P.E. Lindelof, I.E. Miller and G.R. Pickett, Phys. Rev. Lett 35, 1297 (1975).ADSCrossRefGoogle Scholar
  20. 18.
    J.G. Houmann, B.D. Rainford, J. Jensen and A.R. Mackintosh, Phys. Rev. B20, 1105 (1979).ADSGoogle Scholar
  21. 19.
    P.E. Gregers-Hansen, M. Krusius and G.R. Pickett, Phys. Rev. Lett. 29, 420 (1972).ADSCrossRefGoogle Scholar
  22. 20.
    V. Lounasmaa, Phys. Rev. 133, A211 (1964).ADSCrossRefGoogle Scholar
  23. 21.
    B. Holmström, A.C. Anderson and M. Krusius, Phys. Rev. 188, 888 (1969).ADSCrossRefGoogle Scholar
  24. 22.
    K. Andres, E. Bucher, J.P. Malta and L.D. Longinotti, Phys. Rev. B6, 313 (1972).ADSCrossRefGoogle Scholar
  25. 23.
    T. Johansson, B. Lebech, M. Nielsen, H. Miller and A.R. Mackintosh, Phys. Rev. Lett. 25, 524 (1970).ADSCrossRefGoogle Scholar
  26. 24.
    K.A. McEwen, G.J. Cock, L.W. Roeland and A.R. Mackintosh, Phys. Rev. Lett. 30, 287 (1973).ADSCrossRefGoogle Scholar
  27. 25.
    B. Bleaney, Proc. Roy. Soc. A276, 39 (1963).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. Leyarovski
    • 1
  • L. Leyarovska
    • 1
  • Chr. Popov
    • 1
  • N. Iliev
    • 2
  1. 1.Institute of Solid State PhysicsBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute for Low Temperature and Structure Research Polish Academy of SciencesWrocławPoland

Personalised recommendations