Phonon Coupling Mechanisms in Intermetallic Rare Earth Compounds

  • B. Lüthi
  • M. Niksch
  • R. Takke
  • W. Assmus
  • W. Grill


In this review we shall discuss the various interaction mechanisms of phonons with magnetic ions in intermetallic rare earth compounds. One might expect a variety of effects due to the anisotropic charge distribution of the localized 4f electrons and the high density of states of 5d-band electrons. During the past few years we were able to identify 3 main coupling mechanisms of long wavelength phonons in intermetallic rare earth compounds:
  1. a)

    The magnetoelastic interaction, which describes the coupling of the electronic quadrupole (or multipole) moments of the localized 4f electrons to the macroscopic strains.

  2. b)

    A deformation potential coupling of the strain to 5d-band states.

  3. c)

    An anharmonic phonon coupling to zone boundary phonons for cases where these zone boundary phonons exhibit a strong temperature dependence (soft mode).



Elastic Constant Macroscopic Strain Magnetoelastic Interaction Anomalous Temperature Dependence Magnetoelastic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Thomas, in:“Electron-Phonon Interactions and Phase Transitions”, ed. by T. Riste, Plenum Press, New York (1977); G.A. Gehring, in:“Structural Phase Transitions”, ed. by K.A. Müller and H. Thomas, Springer Verlag, to be published.Google Scholar
  2. 2.
    B. Lüthi and W. Rehwald, in:“Topics in Current Physics”, Vol.23, ed. by K.A. Müller and H. Thomas, Springer Verlag, Berlin (1981).Google Scholar
  3. 3.
    P. Morin and D. Schmitt, Phys. Rev. B23, 2278 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    E.R. Callen and H.B. Callen, Phys. Rev. 129, 578 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    P. Fulde, in:“Handbook on the Physics and Chemistry of Rare Earths”, ed. by K.A. Gschneidner and L. Eyring, North-Holland Publishing Comp., Amsterdam, chapter 17 (1978).Google Scholar
  6. 6.
    G.A. Gehring and K.A. Gehring, Rep. Progr. Phys. 38, 1 (1975); R.L. Melcher, in:“Physical Acoustics”, Vol. XII ed. by W.P. Mason, R.N. Thurston, Academic Press, New York (1976).Google Scholar
  7. 7.
    B. Lüthi, J. Magn. Magn. Mat. 15–18, 1 (1980); B. Lüthi, in:“Dynamical Properties of Solids”, Vol.3, ed. by G.K. Horton and A.A. Maradudin, North-Holland Publishing Comp., Amsterdam (1980); B. Lüthi, A.I.P. Conf. Proc. 34, 7 (1976).Google Scholar
  8. 8.
    J.C. Slonczewski and H. Thomas, Phys. Rev. B1, 3599 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    M.E. Mullen, B. Lüthi, P.S. Wang, E. Bucher, L.D. Longinotti, J.P. Malta and H.R. Ott, Phys. Rev. B1O, 186 (1974).Google Scholar
  10. 10.
    P. Morin, D. Schmitt and E. du Trémolet de Lacheisserie, in: “Crystalline Electric Field and Structural Effects in f-Electron Systems”, ed. by J.E. Crow, R.P. Guertin and T.W. Mihalisin, Plenum Press, New York, p. 61 (1980).Google Scholar
  11. 11.
    C. Lingner and B. Lüthi, to be published.Google Scholar
  12. 12.
    G. Creuzet and I.A. Campbell, Phys. Rev. B23, 3375 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    B. Lüthi, M.E. Mullen and E. Bucher, Phys. Rev. Lett. 31… 95 (1973).Google Scholar
  14. 14.
    unpublished results from our laboratoryGoogle Scholar
  15. 15.
    P.M. Levy, P. Morin and D. Schmitt, Phys. Rev. Lett. 42, 1417 (1979).ADSCrossRefGoogle Scholar
  16. 16.
    V. Dohm and P. Fulde, Z. Phys. B21, 369 (1975); P.S. Wang and B. Lüthi, Phys. Rev. B15 2718 (1977);CrossRefGoogle Scholar
  17. L. Bonsall and R.L. Melcher, Phys. Rev. B14, 1128 (1976).ADSCrossRefGoogle Scholar
  18. 17.
    H.R. Ott and B, Lüthi, Z. Phys. B28, 141 (1977).MathSciNetGoogle Scholar
  19. 18.
    K.M. Leung, D.L. Huber and B. Lüthi, J. Appl. Phys. 50, 1831 (1979).ADSCrossRefGoogle Scholar
  20. 19.
    P. Thalmeier and P. Fulde, Z. Phys. B29, 299 (1978); B. Lüthi and C. Lingner, Z. Phys. B34, 157 (1979).Google Scholar
  21. 20.
    G. Gorodetsky, A. Shaulov, V. Volterra and J. Makovsky, Phys. Rev. B13, 1205 (1976).ADSCrossRefGoogle Scholar
  22. 21.
    J.A. Rayne, Phys. Rev. 118, 1515 (1960);ADSCrossRefGoogle Scholar
  23. E. Walker, J. Ortelli and M. Peter, Phys. Lett. 31A, 24 (1970)Google Scholar
  24. 22.
    W. Assmus, R. Takke, R. Sommer and B. Lüthi, J. Phys. C11, L575, Corr. L793 (1978); K. K.orr, B. Renker, W. Assmus, B. Lüthi and H.J. Lauter, Z. Phys. B39, 151 (198).Google Scholar
  25. 23.
    R. Takke, N. Dolezal, W. Assmus and B. Lüthi, J. Magn. Magn. Mat. 23. 247 (1981).ADSCrossRefGoogle Scholar
  26. 24.
    E. Bucher, J.P. Maita, G.W. Hull, L.D. Longinotti, B. Lüthi, P.S. Wang, Z. Phys. B25, 41 (1976); P.J. Ford, W.A. Lambson, A.J. Miller, G.A. Saunders, H. Bach and S. Methfessel, J. Phys. C13, L697 (1980).Google Scholar
  27. 25.
    A. Loidl, private communicationGoogle Scholar
  28. 26.
    M. Niksch, B. Lüthi and K. Andres, Phys. Rev. B22, 5774 (1980).ADSCrossRefGoogle Scholar
  29. 27.
    R. Takke, M. Niksch, W. Assmus, B. Lüthi, R. Pott, R. Schefzyk and D.K. Wohlleben, to be published.Google Scholar
  30. 28.
    B. Batlogg, H.R. Ott, E. Kaldis and P. Wachter, Phys. Rev. B19, 247 (1979).ADSCrossRefGoogle Scholar
  31. 29.
    T. Penney, R.L. Melcher, F. Holtzberg and G. Güntherodt, A.I.P. Conf. Proc. 29, 392 (1975).ADSGoogle Scholar
  32. 30.
    W. Grill and B. Lüthi, Phys. Rev. B24, September (1981).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • B. Lüthi
    • 1
  • M. Niksch
    • 1
  • R. Takke
    • 1
  • W. Assmus
    • 1
  • W. Grill
    • 1
  1. 1.Physikalisches Institut der UniversitätFrankfurt a.M.Germany

Personalised recommendations