Crystal Electric Field Effects in the ESR of Dilute Alloys

  • Klaus Baberschke


Typical microwave frequences for paramagnetic resonance (ESR) are 1, 3, 9 or 35 GHz. This corresponds to an energy of 50 to 1500 mK.kB, respectively, 4 to 140 μeV. The energy resolution of the ESR is limited by the linewidth of two adjacent transitions; in metals for dilute alloys typically a few Gauss or 10−2 to 10−4 of the Zeeman energy. Inelastic neutron scattering (INS) as another microscopic technique covers a range of energy transfer of the order of 1 to 100 K•kB with an energy resolution of 1% to 10%. The lowest concentration of rare earth (RE) ions in dilute alloys to be detected is 10 to 100 ppm for ESR and the order of 1% for INS.


Inelastic Neutron Scatter Zeeman Energy Kondo Effect Crystalline Electric Field Inelastic Neutron Scatter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Davidov, C. Rettori, A. Dixon, K. Baberschke, E.P. Chock, R. Orbach, Phys. Rev. B8, 3563 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    D. Davidov, V. Zevin, R. Levin, D. Shaltiel, K. Baberschke, Phys. Rev. B15, 2771 (1977) and V. Zevin, D. Davidov, R. Levin, D. Shaltiel, K. Baberschke, J. Phys. F7, 2193 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    Hyperfine Interactions, A.J. Freeman and R.B. Frankel, eds., Academic Press, New York (1967).Google Scholar
  4. 4.
    K.W.H. Stevens in “Crystalline Electric Field and Structural Effects in f-Electron Systems”, J.E. Crow, R.P. Guertin and T. Mihalisin, eds., Plenum Press, New York (1980).Google Scholar
  5. 5.
    A. Abragam, B. Bleaney, ESR of Transition Metals, Clarendon Press, Oxford (1970).Google Scholar
  6. 6.
    K.R. Lea, M.J.M. Leask, W.P. Wolf, Phys. Chem. Solids 23 1381 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    a) See various contributions in Ref. 4.Google Scholar
  8. b) Discussion on p.489ff in Ref. 7a.Google Scholar
  9. 8.
    R. Levin, A. Grayevsky, D. Shaltiel, V. Zevin, Sol. Sty. Com. 37, 69 (1981).ADSCrossRefGoogle Scholar
  10. 9.
    H-G. Purwins, E. Walker, B. Barvara, M.F. Rossignol, A. Furrer, J. Phys. C9, 1025 (1976).Google Scholar
  11. 10.
    M. Loewenhaupt, K. Baberschke, H. Scheuer, Sol. St. Com. 33, 175 (1980).ADSCrossRefGoogle Scholar
  12. 11.
    M. Loewenhaupt, S. Horn, B. Frick, this conference.Google Scholar
  13. 12.
    H.E. Hoenig, R. Voitmann, Sol. St. Com. 33, 43 (1980).ADSCrossRefGoogle Scholar
  14. 13.
    K. Baberschke, B. Bachor, H. Luft, J. Pellison, J. de Physique C5, 51 (1979).Google Scholar
  15. 14.
    U. Doebler, K. Baberschke, details to be published.Google Scholar
  16. 15.
    R.A.B. Devine, M. Poirier, T.J. Cry, J. Phys. F5, 1407 (1975).ADSCrossRefGoogle Scholar
  17. 16.
    W. Schafer, H.K. Schmidt, B. Elschner, K.H. Buschow, Z. Phys. 254, 1 (1972).ADSCrossRefGoogle Scholar
  18. 17.
    D.J. Newman, W. Urban, Adv. Phys. 24, 793 (1975).ADSCrossRefGoogle Scholar
  19. 18.
    S.E. Barnes, K. Baberschke, M. Hardiman, Phys. Rev. B18, 2409 (1978).ADSCrossRefGoogle Scholar
  20. 19.
    For detailed discussion and original reference, see Ref. 18.Google Scholar
  21. 20.
    R. Odermatt, Sol. St. Com. 32, 1227 (1980) and R. Odermatt, Thèse, Genève 1981, Phys. Acta 54, (1981).Google Scholar
  22. 21.
    H.H. Luft, Thesis, Darmstadt, 1977, unpublished.Google Scholar
  23. 22.
    K. Baberschke, B. Bachor, S.E. Barnes, Phys. Rev. B21, 2666 (1980).ADSCrossRefGoogle Scholar
  24. 23.
    E. Müller-Hartmann, Verh. DPG 3, 240 (1980).Google Scholar
  25. 24.
    R. Feile, M. Loewenhaupt, J.K. Kjems, H.E. Hoenig, Phys. Rev Lett. 47, 610 (1981).ADSCrossRefGoogle Scholar
  26. 25.
    W. Wagner, G.M. Kalvius, V.D. Gorobschenko, J. Magn. Magn. Mat. 1518, 626 (1980).Google Scholar
  27. 26.
    For review of standard techniques, see e.g • “Superconductivity”, Vols. I, II, R. Parks, ed, Marcel Dekker P ress.Google Scholar
  28. 27.
    H. Luft, K. Baberschke, J. Appl. Phys. 52, 2095 (1981).ADSCrossRefGoogle Scholar
  29. 28.
    For review on polycrystalline results, see K. Baberschke, Z. Physik B24, 53 (1976).Google Scholar
  30. 29.
    For details see review article by S.E. Barnes, Adv. in Phys., to appear.Google Scholar
  31. 30.
    B. Caroli, J. Phys. F5, 1399 (1975).ADSCrossRefGoogle Scholar
  32. 31.
    P.W. Anderson, Comments, Sol. St. Phys. 1, 31 and 190 (1968), and S.E. Barnes, J. Phys. F6, 1713 (1976).CrossRefGoogle Scholar
  33. 32.
    K. Baberschke, E. Tsang, Phys. Rev. Lett. 45, 1512 (1980) and E. Tsang, K. Baberschke, J. Appl. Phys. 52, 2208 (1981).ADSCrossRefGoogle Scholar
  34. 33.
    Similar arguments have been used for NMR in CuMn, see H. Alloul, F. Hippert, H. Iskii, J. Phys. F9, 725 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Klaus Baberschke
    • 1
  1. 1.Institut für Atom- und FestkörperphysikFreie Universität BerlinBerlin 33Germany

Personalised recommendations