Singlet Ground State System in Amorphous Rare Earth Alloys

  • A. K. Bhattacharjee
  • B. Coqblin


Amorphous alloys containing rare earths have been extensively studied in the last years [1]. To explain their magnetic properties, Harris, Plischke and Zuckermann (HPZ) [2] have introduced the random anisotropy model in which each rare earth moment is subjected to a local uniaxial anisotropy, the anisotropy axes being randomly oriented. The HPZ model can account for the magnetic properties of amorphous alloys such as DyNi3.4, by assuming a ferromagnetic nearest neighbor interaction. On the other hand, a model describing random anisotropy antiferromagnetism has been then developed to account for the properties of amorphous alloys such as TbAg [3].


Amorphous Alloy Paramagnetic Susceptibility Crystalline Field Antiferromagnetic Exchange Interaction Specific Heat Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.W. Cochrane, R. Harris and M.J. Zuckermann, Physics Reports 48, 1 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    R. Harris, M. Plischke and M.J. Zuckermann, Phys. Rev. Lett. 31, 160 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    A. K. Bhattacharjee and B. Coqblin, Solid State Comm., 27, 599 (1978).ADSCrossRefGoogle Scholar
  4. 4.
    C. Pappa, Thesis 3ème Cycle, Université Paris V I (1979).Google Scholar
  5. 5.
    N. Hassanain, A. Berrada, J. Durand and B. Loegel, J.M.M.M., 15–18,. 1377 (1980).Google Scholar
  6. N. Hassanain, Thesis Sème Cycle, Université Louis Pasteur, Strasbourg, (1980).Google Scholar
  7. 6.
    A. Fert, P. Garoche, B. Boucher and J. Durand, in:“Crystalline Electric Field and Structural Effects in f-Electron Systems,” Plenum, New York, 1980. p. 491.Google Scholar
  8. 7.
    P. Garoche, A. Fert, J.J. Veyssié and B. Boucher, J.M.M.M. 15–18, 1397 (1980).Google Scholar
  9. 8.
    P. Garoche, J.J. Veyssié and J. Durand, J. Physique Lettres 41, L 357 (1980).Google Scholar
  10. 9.
    R.W. Cochrane, R. Harris, M. Plischke, D. Zobin and M.J. Zuckermann, J. Phys. F.: Metal Phys. 5, 763 (1975).ADSCrossRefGoogle Scholar
  11. 10.
    J.B. Bieri,Thesis 3eme Cycle, Université Paris Sud, Orsay (1981).Google Scholar
  12. J.B. Bieri and A. Fert. To be published.Google Scholar
  13. 11.
    B.R. Cooper in “Magnetic Properties of Rare-Earth Metals”, ed. R.J. Elliott, Plenum Press London, and New York (1972) pp. 44. 45.Google Scholar
  14. 12.
    A.K. Bhattacharjee and B. Coqblin. To be published.Google Scholar
  15. 13.
    S. Legvold, R.W. Green, B.J. Beaudry and J.E. Ostenson, Solid State Comm. 18, 725 (1976).ADSCrossRefGoogle Scholar
  16. 14.
    D. Sherrington, J. Phys. C: Solid State Phys. 12, L 929 (1979)Google Scholar
  17. 15.
    K. Uzelac, R. Jullien and P. Pfeuty, J. Phys. À-7 Math. Gen. 13, 3735 (1980).CrossRefGoogle Scholar
  18. 16.
    A. Berrada, J. Durand, N. Hassanain and B. Loegel, XIV Rare-Earth Research Conf. (Fargo, North Dakota, June 1979). A. Berrada, private communication (1981).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. K. Bhattacharjee
    • 1
  • B. Coqblin
    • 1
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance

Personalised recommendations