Advertisement

Comparative Studies on Rat Brain Soluble Acetylcholinesterase and Its Molecular Forms during Intoxication by DFP and Paraoxon

  • H. Michalek
  • G. M. Bisso
  • A. Meneguz
Part of the Advances in Behavioral Biology book series (ABBI, volume 25)

Abstract

Previous reports from this laboratory (9) showed a differential recovery of various forms of acetylcholinesterase (AChE) of the rat brain after poisoning by DFP, the recovery being particularly rapid for medium molecular weight forms, and the phenomenon markedly pronounced in the striatum (8). It is well known that DFP and paraoxon cause substantially the same symptoms in the early phase of poisoning although differing in their chemical structure, which determines the type of phosphorylated AChE formed (diisopropyl- and diethylphos-phoryl-, respectively) and the rate of subsequent recovery in vivo and in vitro (for references see 1,4,7,12).

Keywords

Molecular Form Molecular Weight Form Brain AChE Acetylthiocholine Iodide High Molecular Weight Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bignami, G., Rosic, N., Michalek, H., Milosevic, M. and Gatti, G.L. (1975): IN Behavioral Toxicology (eds) B. Weiss and V.G. Laties, Plenum Press, New York, pp. 155–215.Google Scholar
  2. 2.
    Bisso, G.M., Nemesio, R. and Michalek, H. (1980): IN A Multi-disciplinary Approach to Brain Development (eds) C. Di Benedetta, R. Balazs, G. Gombos and G. Porcellati, Elsevier-North-Holland, Amsterdam, pp. 235–236.Google Scholar
  3. 3.
    Cisson, CM. and Wilson, B.W. (1977): Biochem. Pharmacol. 26:1955–1960.CrossRefGoogle Scholar
  4. 4.
    Cohen, J.A. and Oosterbaan, R.A. (1963): IN Handbuch der Experimentellen Pharmakologie, Vol. 15 (ed) G.B. Koelle, Springer, Berlin, pp. 299–373.Google Scholar
  5. 5.
    Davis, G.A. and Agranoff, B.W. (1968): Nature 20:277–280.CrossRefGoogle Scholar
  6. 6.
    Ellman, G.L., Courtney, K.D., Andres, V. Jr. and Featherstone, R.M. (1961): Biochem. Pharmacol. 788–95.Google Scholar
  7. 7.
    Main, A.R. (1979): Pharmacol. Ther. 6:579–628.CrossRefGoogle Scholar
  8. 8.
    Meneguz, A., Bisso, G.M. and Michalek, H. (1981): Clin. Toxicol. (in press).Google Scholar
  9. 9.
    Michalek, H., Meneguz, A., Bisso, G.M., Carro-Ciampi, G., Gatti, G.L. and Bignami, G. (1979): IN Advances in Pharmacology and Therapeutics, Vol. 9 (ed) Y. Cohen, Pergamon Press, Oxford, pp. 187–201.Google Scholar
  10. 10.
    Niemierko, S. and Skangiel-Kramska, J. (1976): Bull. Acad. Pol. Sci. (Biol) 24:445–448.Google Scholar
  11. 11.
    Rieger, F., Faivre Bauman, A., Benda, P. and Vigny, M. (1976): J. Neurochem. 27:1059–1063.CrossRefGoogle Scholar
  12. 12.
    Usdin, E. (1970): IN Anticholinesterase Agents (ed) A.G. Karczmar, Pergamon Press, Oxford, pp. 47–354.Google Scholar
  13. 13.
    Wilson, B.W. and Walker, CR. (1974): Proc. Nat. Acad. Sci. 7:3194–3198.CrossRefGoogle Scholar
  14. 14.
    Yaksh, T.L., Filbert, M.G., Harris, L.W. and Yamamura, H.I. (1975): J. Neurochem. 25:853–860.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • H. Michalek
    • 1
  • G. M. Bisso
    • 1
  • A. Meneguz
    • 1
  1. 1.Laboratory of PharmacologyIstituto Superiore di SanitaRomeItaly

Personalised recommendations