Regulation of Acetylcholine Release During Increased Neuronal Activity

  • L. Wecker
  • A. M. Goldberg
Part of the Advances in Behavioral Biology book series (ABBI, volume 25)


The availability of choline (Ch) in the microenvironment of the nerve terminal and its transport across the neuronal membrane may play a significant role in the dynamic regulation of acetylcholine (ACh) metabolism. However, the precise nature of, or factors involved in, the regulatory processes have not been unequivocally determined. In particular, relatively little attention has been focussed on the possibility that the mechanisms regulating the metabolism of ACh can be modified or directly influenced by the state of neuronal activity. Plasticity, the ability to alter or adapt with the immediate environment, is characteristic of numerous biological systems. Hence, it is possible that the regulatory mechanisms controlling the metabolism of ACh may vary according to the demands imposed on the neuron. In order to characterize the nature of the regulatory process(es) and elucidate the determinant effects of the availability and transport of Ch on the metabolism of ACh, we have taken into account the physiological status of the neuron. Consideration of both the supply to and the demand of the system for Ch will undoubtedly clarify the relationship between neuronal activity and possible regulatory mechanisms.


Neuronal Activity Cholinergic Neuron Acetylcholine Release Atropine Sulfate Neurotransmitter Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ansell, G.B. and Spanner, S. (1975): In Cholinergic Mechanisms, (ed) P.G. Waser, Raven Press, New York, pp. 117–129.Google Scholar
  2. 2.
    Barker, L.A. (1976): In Biology of Cholinergic Function,(eds) A.M. Goldberg and I. Hanin, Raven Press, New York, pp. 203- 238.Google Scholar
  3. 3.
    Barker, L.A. and Mittag, T. (1975): J. Pharmacol. Exp. Ther. 192:86–94.Google Scholar
  4. 4.
    Bierkamper, G.G. and Goldberg, A.M. (1979): In Nutrition and the Brain, Vol. 5 (eds) A. Barbeau, J. H. Growdon and R. J. Wurtman, Raven Press, New York, pp. 243–251.Google Scholar
  5. 5.
    Birks, R. and Macintosh, F.C. (1961); Canad. J, Biochem. Physiol. 39:787–827.CrossRefGoogle Scholar
  6. 6.
    Browning, E.T. (1976): In Biology of Cholinergic Function, (eds) A. M. Goldberg and I. Hanin, Raven Press, New York, pp. 187–201.Google Scholar
  7. 7.
    Browning, E.T. and Schulman, M.P. (1968): J. Neurochem. 15:1391–1405.CrossRefGoogle Scholar
  8. 8.
    Carroll, P.T. and Goldberg, A.M. (1975): J. Neurochem. 25: 523–527.CrossRefGoogle Scholar
  9. 9.
    Choi, R.L., Freeman, J.J. and Jenden, D.J. (1975): J. Neurochem. 24:735–741.Google Scholar
  10. 10.
    Cohen, E. and Wurtman, R.J. (1975): Life Sci. 16:1095–1102.CrossRefGoogle Scholar
  11. 11.
    Collier, B. and Macintosh, F.C. (1969); Canad. J. Physiol. Pharmacol. 47:127–135.CrossRefGoogle Scholar
  12. 12.
    Dowdall, M.J. and Simon, E.J. (1973): J. Neurochem. 21:969–982CrossRefGoogle Scholar
  13. 13.
    Dross, K. and Kewitz, H. (1972): Naun.-Schmid. Arch. Pharmacol Exp. Pathol. 274:91–106.CrossRefGoogle Scholar
  14. 14.
    Dudar, J.D. and Szerb, J.C. (1969): J. Physiol. 203:741–762.Google Scholar
  15. 15.
    Eckernas, S.A., Sahlstrom, L. and Aquilonius, S.M. (1977): Acta Physiol. Scand. 101:404–410.CrossRefGoogle Scholar
  16. 16.
    Freeman, J.J., Choi, R.L. and Jenden, D.J. (1975): J. Neurochem. 24:729–734.Google Scholar
  17. 17.
    Guyenet, P., Lefresne, P., Rossier, J., Beaujouan, J.C. and Glowinski, J. (1973): Molec. Pharmacol. 9:630–639.Google Scholar
  18. 18.
    Haga, T. and Noda, H. (1973): Biochem. Biophys, Acta 291: 564–575.CrossRefGoogle Scholar
  19. 19.
    Hanin, I. and Schuberth, J. (1974): J. Neurochem. 23:819–824.CrossRefGoogle Scholar
  20. 20.
    Hanin, I., Massarelli, R. and Costa, E. (1972): Adv. Biochem. Pharmacol. 6:181–203.Google Scholar
  21. 21.
    Haubrich, D.R., Wedeking, P.W. and Wang, P.F.L. (1974): Life Sci. 14:921–927.CrossRefGoogle Scholar
  22. 22.
    Haubrich, D.R., Wang, P.F.L., Clody, D.E. and Wedeking, P.W.(1975):Life Sci. 17:975–980.CrossRefGoogle Scholar
  23. 23.
    Haubrich, D.R., Wang, P.F.L., Chippendale, T. and Procter. E.(1976):J. Neurochem. 27:1305–1313.CrossRefGoogle Scholar
  24. 24.
    Holmstedt, B. (1967): Ann. N.Y. Acad. Sci. 144:433–458.CrossRefGoogle Scholar
  25. 25.
    Jenden, D.J., Jope, R.S. and Weiler, M.H. (1976): Science 194:635–637.CrossRefGoogle Scholar
  26. 26.
    Jope, R.S. and Jenden, D.J. (1977): Life Sci. 20:1389–1393.CrossRefGoogle Scholar
  27. 27.
    Kewitz, H., Dross, K. and Pleul, O. (1973): In Central Neryous System: Studies on Metabolic Regulation and Function, (eds) E. Genazzani and H. Herken, Springer-Verlag, New York, pp. 21–32Google Scholar
  28. 28.
    Ksiezak, H. and Goldberg, A.M. (1979): Neurosci. Abst. 5:591.Google Scholar
  29. 29.
    Kuhar, M.J. and Zarbin, M.A. (1978): J. Neurochem. 31:251–256.CrossRefGoogle Scholar
  30. 30.
    Lovat, S., Millington, W. and Collier, B. (1978): Proc. Canad. Fed. Biol. Sci. 21:2.Google Scholar
  31. 31.
    Lundholm, B. and Sparf, B. (1975): Eur. J. Pharmacol. 32,:287–292.CrossRefGoogle Scholar
  32. 32.
    Masland, R.H. and Livingstone, C.J. (1976): J. Neuro Physiol. 39:1210–1219.Google Scholar
  33. 33.
    Moleman, P. and Bruinvels, J. (1979); Nature 281:686–687.CrossRefGoogle Scholar
  34. 34.
    Murrin, L.C., DeHaven, R.N. and Kuhar, M.J. (1977): J. Neurochem. 29: 681–687.CrossRefGoogle Scholar
  35. 35.
    Pedata, F., Wieraszko, A. and Pepeu, G. (1977); Pharmacol. Res. Commun. 9:755–761.CrossRefGoogle Scholar
  36. 36.
    Perry, W.L.M. (1953): J. Physiol. 119:439–454.Google Scholar
  37. 37.
    Potter, L.T. (1970): J. Physiol. 206:145–166.Google Scholar
  38. 38.
    Racagni, G., Trabucchi, M. and Cheney, D.L. (1975): Naun,-Schmid. Arch. Pharmacol. 290:99–105.CrossRefGoogle Scholar
  39. 39.
    Schuberth, J., Sparf, B. and Sundwall, A. (1969): J. Neurochem, 16:695–700.CrossRefGoogle Scholar
  40. 40.
    Schuberth, J., Sparf, B. and Sundwall, A, (1970): J, Neurochem. 17: 461–468.CrossRefGoogle Scholar
  41. 41.
    Sherman, K.A., Hanin, I. and Zigmond, M.J. (1978); J. Pharmacol Exp. Ther. 206:677–686.Google Scholar
  42. 42.
    Simon, J.R., Atweh, S. and Kuhar, M.J. (1976): J. Neurochem. 26:909–922.CrossRefGoogle Scholar
  43. 43.
    Suszkiw, J.B., Beach, R.L. and Pilar, G.R. (1976): J. Neurochem. 26:1123–1131.CrossRefGoogle Scholar
  44. 44.
    Szerb, J.C., Malik, H. and Hunter, E.G. (1970): Canad. J. Physiol. Pharmacol. 48:780–790.CrossRefGoogle Scholar
  45. 45.
    Trommer, B.A., Schmidt, D.E. and Wecker, L, (1980): Fed. Proc. 39:412.Google Scholar
  46. 46.
    Wecker, L. and Dettbarn, W-D. (1979): J. Neurochem. 32:961–967.CrossRefGoogle Scholar
  47. 47.
    Wecker, L. and Schmidt, D.E. (1979): Life Sci. 25:375–384.CrossRefGoogle Scholar
  48. 48.
    Wecker, L. and Schmidt, D.E. (1980): Brain Res. 184:234–238.CrossRefGoogle Scholar
  49. 49.
    Wecker, L., Dettbarn, W -D. and Schmidt, D.E. (1978); Science 199:86–87.CrossRefGoogle Scholar
  50. 50.
    Weiler, M.H., Jope, R.S. and Jenden, D.J. (1978): J. Neurochem. 31:789–796.CrossRefGoogle Scholar
  51. 51.
    Yamamura, H.I. and Snyder, S.H. (1973): J. Neurochem. 21: 1355–1374.CrossRefGoogle Scholar
  52. 52.
    Yavin, E. (1976): J. Biol. Chem. 251:1392–1397Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • L. Wecker
    • 1
  • A. M. Goldberg
    • 2
  1. 1.Department of PharmacologyLouisiana State University Medical CenterNew OrleansUSA
  2. 2.Department of Environmental Health Sciences Division of ToxicologyThe Johns Hopkins University School of Hygiene and Public HealthBaltimoreUSA

Personalised recommendations