Advertisement

Questions Raised by the Electron Microscopic Localization of Acetylcholinesterase and Butyrylcholinesterase in Normal and Denervated Superior Cervical Ganglia in the Cat

  • G. B. Koelle
  • R. Davis
  • W. A. Koelle
  • G. A. Ruch
  • K. K. Rickard
  • U. J. Sanville
Part of the Advances in Behavioral Biology book series (ABBI, volume 25)

Abstract

With the development of the copper thiocholine (CuThCh) histochemical method for the light microscopic (LM) localization of cholinesterases over 30 years ago (15) and the application of its modifications (9–11,16) to the normal and preganglionically denervated superior cervical ganglion (SCG) of the cat, the distributions of acetylcholinesterase (AChE) and butyrylcholinesterase (Bu-ChE) in this tissue appeared to have been established. In the normal ganglion, AChE was present in high concentrations in the perikarya of occasional (< 1%) ganglion cells (6) and in traces in the remainder, and in considerable concentration throughout the neuropil (Fig. 1). Following preganglionic denervation, staining for AChE disappeared completely from the neuropil but remained unchanged in the perikaya of the ganglion cells. It was therefore concluded that staining of the neuropil represented enzyme confined solely to the preganglionic fibers and their terminals. Staining for BuChE was intense throughout the neuropil and completely absent from the perikaya of the ganglion cells; following denervation, there was only a slight decrease in the intensity of staining. From these and related findings (1,2) it appeared that BuChE was present only in capsular glial cells. These findings were consistent with the results of quantitative determinations in normal and preganglionically denervated ganglia (14,25). Pharmacological studies provided a hypothetical explanation for the function of the presynaptically located AChE (12,30).

Keywords

Ganglion Cell Superior Cervical Ganglion Stellate Ganglion Related Finding Motor Endplate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulbring, E., Philpot, F.J. and Bosanquet, F.D. (1963): Lancet 1:865–866.Google Scholar
  2. 2.
    Cavanagh, J.B., Thompson, R.H. and Webster, G.R. (1954): Quart. J. Exp. Physiol. 39:185–197.Google Scholar
  3. 3.
    Davey, B., Younkin, L.H. and Younkin, S.G. (1979): J. Physiol. 289:501–515.Google Scholar
  4. 4.
    Davis, R. and Koelle, G.B. (1978): J. Cell Biol. 78:785–809.CrossRefGoogle Scholar
  5. 5.
    Freer, S.T., Kraut, J., Robertus, J.D., Wright, H.T. and Xuong, Ng.H. (1970): Biochemistry 9:1997–2009.CrossRefGoogle Scholar
  6. 6.
    Holmstedt, B. and Sjoqvist, F. (1959): Acta Physiol. Scand. 47:284–296.CrossRefGoogle Scholar
  7. 7.
    Jessell, T.M., Siegel, R.E. and Fischbach, G.D. (1979): Proc. Nat. Acad. Sci. 76:5397–5401.CrossRefGoogle Scholar
  8. 8.
    Kabachnik, M.I., Brestkin, A.P., Godovikov, N.N., Michelson, M.J., Rozengart, E.V. and Rozengart, V.l. (1970): Pharmacol. Rev. 22:355–388.Google Scholar
  9. 9.
    Koelle, G.B. (1950): J. Pharmacol. Exp. Ther. 100:158–179.Google Scholar
  10. 10.
    Koelle, G.B. (1951): J. Pharmacol. Exp. Ther. 103:153–171.Google Scholar
  11. 11.
    Koelle, G.B. (1955): J. Pharmacol. Exp. Ther. 114:167–184.Google Scholar
  12. 12.
    Koelle, G.B. (1962): J. Pharm. Pharmacol. 14:65–90.CrossRefGoogle Scholar
  13. 13.
    Koelle, G.B. (1963): IN Cholinesterases and Anticholinesterase Agents (ed) G.B. Koelle, Springer-Verlag, New York.Google Scholar
  14. 14.
    Koelle, G.B., Davis, R. and Koelle, W.A. (1974): J. Histochem. Cytochem. 22:244–251.CrossRefGoogle Scholar
  15. 15.
    Koelle, G.B. and Friedenwald, J.S. (1949): Proc. Soc. Exp. Biol. 70:617–622.Google Scholar
  16. 16.
    Koelle, W.A. and Koelle, G.B. (1959) S J. Pharmacol. Exp. Ther. 126:1–8.Google Scholar
  17. 17.
    Koelle, W.A., Koelle, G.B. and Smyrl, E.G. (1976): Proc. Nat. Acad. Sci. 73:2936–2938.CrossRefGoogle Scholar
  18. 18.
    Koelle, G.B., Koelle, W.A. and Smyrl, E.G. (1977): J. Neurochem 28:313–319.CrossRefGoogle Scholar
  19. 19.
    Koelle, G.B., Rickard, K.K. and Ruch, G.A. (1979): Proc. Nat. Acad. Sci. 76:6012–6016.CrossRefGoogle Scholar
  20. 20.
    Koelle, G.B., Rickard, K.K. and Smyrl, E.G. (1979): J. Neuro. chem. 33:1159–1164.Google Scholar
  21. 21.
    Langel, U. and Jarv, J. (1978): Biochim. Biophys. Acta 525: 122–133.CrossRefGoogle Scholar
  22. 22.
    Lentz, T.L. (1974): Exp. Neurol. 45:520–526.CrossRefGoogle Scholar
  23. 23.
    Neville, A.C. (1975): Biology of the Arthroped Cuticle, Vol.4/5, Springer-Verlag, New York.Google Scholar
  24. 24.
    Oh, T.H. and Markelonis, G.J. (1978): Science 200:338–339.CrossRefGoogle Scholar
  25. 25.
    Sawyer, C.H. and Hollinshead, W.H. (1945): J. Neuro Physiol. 8:137–153.Google Scholar
  26. 26.
    Silver, A. (1974): The Biology of Cholinesterases, American Elsevier Publ. Co., New York.Google Scholar
  27. 27.
    Skau, K.A. and Brimijoin, S. (1978): Nature 275:224–226.CrossRefGoogle Scholar
  28. 28.
    Somogyi, P., Chubb, I.W. and Smith, A.D. (1975): Proc. Roy. Soc. Lond. B 191:271–283.CrossRefGoogle Scholar
  29. 29.
    Steitz, T.A., Henderson, R. and Blow, D.M. (1969): J. Molec. Biol. 46:337–348.CrossRefGoogle Scholar
  30. 30.
    Volle, R.L. and Koelle, G.B. (1961): J. Pharmacol. Exp. Ther. 133:223–240.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. B. Koelle
    • 1
  • R. Davis
    • 1
  • W. A. Koelle
    • 1
  • G. A. Ruch
    • 1
  • K. K. Rickard
    • 1
  • U. J. Sanville
    • 1
  1. 1.Department of PharmacologyUniversity of Pennsylvania Medical SchoolPhiladelphiaUSA

Personalised recommendations