Advertisement

PGE1-Induced cAMP Biosynthesis in the Superior Cervical Ganglion of Different Animal Species

  • V. Perri
  • O. Belluzzi
  • C. Biondi
  • P. G. Borasio
  • A. Capuzzo
  • M. E. Ferretti
  • A. Trevisani
Part of the Advances in Behavioral Biology book series (ABBI, volume 25)

Abstract

Some years ago Greengard and coworkers (5–7) put forward a comprehensive hypothesis to explain the genesis of the slow synaptic potentials observed in curarized mammalian sympathetic ganglia after tetanization of preganglionic fibers. Following this hypothesis the slow synaptic potentials were due to an increase of cyclic nucleotides levels brought about by the interaction of either acetylcholine (ACh)(slow EPSP) or dopamine (DA)(slow IPSP) with specific receptors located on ganglion neuron membranes. In particular, according to Greengard’s hypothesis, prostaglandin E1 (PGE1) would act as a DA antagonist reducing the amplitude of the slow IPSP extracellularly recorded from isolated ganglion preparations. Since DA was supposed to increase cAMP levels via activation of adenylate cyclase, PGE1 would exert an inhibitory action on this enzyme.

Keywords

Adenylate Cyclase cAMP Level Superior Cervical Ganglion Increase cAMP Level Ganglion Inter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartolini, G., Meringolo, C., Orlandi, M. and Tomasi, V. (1978): Biochim. Biophys. Acta 530:325–332.CrossRefGoogle Scholar
  2. 2.
    Beani, L., Bianchi, C., Giacomelli, A. and Tamberi, F. (1978); Eur. J. Pharmacol. 48:179–193.CrossRefGoogle Scholar
  3. 3.
    Dun, N.J., Kaibara, K. and Karczmar, A.G. (1977): Science 197:778–779.CrossRefGoogle Scholar
  4. 4.
    Gallagher, J.P. and Shinnick-Gallagher, P. (1977): Science 198:851–852.CrossRefGoogle Scholar
  5. 5.
    Greengard, P. (1976): Nature 260:101–108.CrossRefGoogle Scholar
  6. 6.
    Greengard, P. and Kebabian, J.W. (1974): Fed. Proc. 33:1059–1067.Google Scholar
  7. 7.
    Greengard, P., McAfee, D.A. and Kebabian, J.W. (.1972); Adv, Cyclic Nucleotide Res. 1:337–355.Google Scholar
  8. 8.
    Hedqvist, P. (1977): Ann. Rev. Pharmacol. 17:259–279.CrossRefGoogle Scholar
  9. 9.
    Kalix, P., McAfee, D.A., Schorderet, M. and Greengard, F. (1974): J. Pharmacol. Exp. Ther. 188:676–687.Google Scholar
  10. 10.
    Libet, B. (1979): Life Sci. 24:1043–1058.CrossRefGoogle Scholar
  11. 11.
    Perri, V., Sacchi, O. and Casella, C. (1970): Quart. J. Exp, Physiol. 55:25–35.Google Scholar
  12. 12.
    Salmon, J.A. and Karim, S.M.M. (1975): In Advances in Prostaglandin Research, Vol. 1, (ed) S.M.M. Karim, MTP Press, Lancaster, pp. 25–85.Google Scholar
  13. 13.
    Tomasi, V., Biondi, C., Trevisani, A., Martini, M. and Perri, V. (1977): J. Neurochem. 28:1289–1297.CrossRefGoogle Scholar
  14. 14.
    Tomasi, V., Trevisani, A., Biondi, C., Capuzzo, A. and Perri, V. (1977): Biochem. Soc. Trans. 5.:520–523.Google Scholar
  15. 15.
    Trevisani, A., Biondi, C., Borasio, P.G., Capuzzo, A., Ferretti, M.E., Belluzzi, O. and Perri, V. (1980) (In press).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • V. Perri
    • 1
  • O. Belluzzi
    • 1
  • C. Biondi
  • P. G. Borasio
    • 1
  • A. Capuzzo
    • 1
  • M. E. Ferretti
    • 1
  • A. Trevisani
    • 1
  1. 1.Institutes of Human Physiology and General PhysiologyUniversity of FerraraFerraraItaly

Personalised recommendations