Advertisement

Mitochondrial Electron Transport: The Random Collision Model

  • Charles R. Hackenbrock
  • Sharmila Shaila Gupte
  • Brad Chazotte

Summary

Data are presented which represent the experimental basis for the random collision model of mitochondrial electron transport. The random collision model rejects the notion that permanent assemblies or transient aggregates of redox components are necessary to account for the sequence or rate of electron transport in the inner membrane. The five fundamental postulates upon which the random collision model is founded are presented: (1) All redox components are independent lateral diffusants; (2) Cytochrome c diffuses primarily in three dimensions; (3) Electron transport is a diffusion-coupled kinetic process; (4) Electron transport is a multicollisional, obstructed, long-range diffusional process; (5) The rates of diffusion of the redox components have a direct influence on the overall kinetic process of electron transport and can be rate limiting, as in diffusion control. The experimental results obtained in testing each of the five postulates of the random collision model are presented. It is concluded that mitochondrial electron transport is a diffusion-based random collision process and that diffusion has an integral and controlling effect on electron transport.

Keywords

Ionic Strength Electron Transport Collision Frequency Fluorescence Recovery Redox Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hackenbrock, C.R., Chazotte, B., and Gupte, S.S. (1986) J. Bioenergetics and Biomembranes. 18, 327–364Google Scholar
  2. 2.
    Hackenbrock, C.R., Hochli, M., and Chau, R.M. (1976) Biochim. Biophys. Acta, 455, 466–484CrossRefGoogle Scholar
  3. 3.
    Höchli, M. and Hackenbrock, C.R. (1976) Proc. Natl. Acad. Sei. USA 73, 1636–1640CrossRefGoogle Scholar
  4. 4.
    Höchli, M. and Hackenbrock, C.R. (1977) J. Cell Biol. 72, 278–291CrossRefGoogle Scholar
  5. 5.
    Sowers, A.E. and Hackenbrock, C.R. (1981) Proc. Natl. Acad. Sei. USA , 78, 6246–6250CrossRefGoogle Scholar
  6. 6.
    Schneider, H., Lemasters, J.J., Hochli, M., and Hackenbrock, C.R. (1980) Proc. Natl. Acad. Sei, USA 77, 442–446CrossRefGoogle Scholar
  7. 7.
    Schneider, H., Lemasters, J.J., Hochli, M., and Hackenbrock, C.R. (1980) J. Biol. Chem. 255, 3748–3756Google Scholar
  8. 8.
    Schneider, H., Lemasters, J.J., and Hackenbrock, C.R. (1982) J. Biol. Chem. 257, 10789–10793Google Scholar
  9. 9.
    Schneider, H., Hochli, M., and Hackenbrock, C.R. (1982) J. Cell Biol. 94, 387–393CrossRefGoogle Scholar
  10. 10.
    Gupte, S., Wu, E-S., Hochli, L., Hochli, M., Jacobson, K., Sowers, A., and Hackenbrock, C.R. (1984) Proc. Natl. Acad. Sei. USA 81, 2606–2610CrossRefGoogle Scholar
  11. 11.
    Gupte, S.S. and Hackenbrock, C.R.,This meeting Google Scholar
  12. 12.
    Hatefi, Y. and Galante, Y.M. (1978) in: Energy Conservation in Biological Membranes (Schafer, G. and Klingenberg, M. eds), Springer, Berlin, pp 19–30Google Scholar
  13. 13.
    Gear, A.R.L. and Bednarek, J.M. (1972) J. Cell. Biol. 56, 325–345CrossRefGoogle Scholar
  14. 14.
    Weibel, E.R., Kistler, G.S. and Scherle, W.F. (1966) J. Cell. Biol. 30, 23–38CrossRefGoogle Scholar
  15. 15.
    Klingenberg, M. and Kroger, A. (1967) in: Biochemistry of Mitochondria (Slater, E.C., Kanigu, Z., and Wojtczak, L., eds.) Academic Press, New York, pp 11–27Google Scholar
  16. 16.
    Hardt, S.L. (1979) Biophys. Chem. 10, 239–243CrossRefGoogle Scholar
  17. 17.
    Hochli, M., Hochli, L., and Hackenbrock, C.R. (1985) Eur. J. Cell. Biol. 38, 1–5Google Scholar
  18. 18.
    Kawato, S., Lehner, C., Muller, M., and Cherry, R.J. (1982) J. Biol. Chem. 257, 6470–6475Google Scholar
  19. 19.
    Chazotte, B., and Hackenbrock, C.R. This volume Google Scholar
  20. 20.
    Hackenbrock, C.R., Gupte, S.S., and Chazotte, B. (1985) in: Achievements and Perspectives of Mitochondrial Research, Volume I: Bioenergetics (Quagliarello, E, et al. , eds) Elsevier, Amsterdam, pp 83–101Google Scholar
  21. 21.
    Hille, B. (1984) in: Ionic Channels of Excitable Membranes, Sinauer Assoc. Inc. p 14Google Scholar
  22. 22.
    Hackenbrock, C.R. (1966) J. Cell. Biol. 30, 269–297CrossRefGoogle Scholar
  23. 23.
    Hackenbrock, C.R. (1968) J. Cell. Biol. 37, 345–369CrossRefGoogle Scholar
  24. 24.
    Barisas, B.G. and Leuther, M.D. (1979) Biophys. Chem. 10, 221–229CrossRefGoogle Scholar
  25. 25.
    Cadman, A.D., Fleming, R. and Guy, R.H. (1981) Biophys.J 37, 569–574Google Scholar
  26. 26.
    Stryer, L. (1978) Ann. Rev. Biochem. 47, 819–846CrossRefGoogle Scholar
  27. 27.
    Vanderkooi, J., Maniara, G., and Erecinska, M. (1985) J. Cell. Biol. 100, 435–441CrossRefGoogle Scholar
  28. 28.
    Salemme, F.R. (1977) Ann. Rev. Biochem. 46, 299–329CrossRefGoogle Scholar
  29. 29.
    Freedman, J.A. and Chan, S.H.P.(1983) J. Biol. Chem. 258, 5885–5892Google Scholar
  30. 30.
    Hochman, J.H., Schindler, M., Lee, J.G., and Ferguson-Miller, S.(1982) Proc. Natl. Acad. Sei. USA 79, 6866–6870CrossRefGoogle Scholar
  31. 31.
    Hochman, J., Ferguson-Miller, S., and Schindler, M. (1985) Biochem. 24, 2509–2516CrossRefGoogle Scholar
  32. 32.
    Estabrook, R. and Holowinsky, A. (1961) J. Cell. Biol. 9, 19–28CrossRefGoogle Scholar
  33. 33.
    Capaldi, R.A. (1982) Biochim. Biophys. Acta 694, 291–306Google Scholar
  34. 34.
    Schwerzmann, K., Cruz-Orive, L.M., Eggman, R., Sanger, A., and Weibel, E.R. (1986) J. Cell. Biol. 102, 97–103CrossRefGoogle Scholar
  35. 35.
    Johnson, F.H., Eyring, H., and Stover, B.J. (1975) in: Theory of Rate Processes in Biology and Medicine, J. Wiley and Sons, New YorkGoogle Scholar
  36. 36.
    Eyring, H. (1935) J. Chem. Phys. 3, 107–115CrossRefGoogle Scholar
  37. 37.
    Veerman, E.C.I., Wilms, J., Dekker, H.L., Muijsers, A.O., van Buren, K.J.H., van Gelder, B.F., Osheroff, N., Speek, S.H., and Margoliash, E. (1983) J. Biol. Chem. 258, 5739Google Scholar
  38. 38.
    Speek, S.H. and Margoliash, E. (1984) J. Biol. Chem. 259, 1064–1072Google Scholar
  39. 39.
    Mareus, R.A. and Sutin, N. (1985) Biochim. Biophys. Acta 811, 265–322Google Scholar
  40. 40.
    Lenaz, G., Battino, M., Esposti, M., Fato, R., and Parenti-Castelli, G. (1986) in; Biomedical and Clinical Aspects of Coenzyme Q, Volume 5 (Yamamura, Y. and Folkers, K., eds.) Elsevier, Amsterdam, pp 73–84Google Scholar
  41. 41.
    Fato, R., Battino, M., Degli Esposti, M., Parenti-Castelli, G., and Lenaz, G. (1986) Biochemistry 25, 3378–3390CrossRefGoogle Scholar
  42. 42.
    Lakowiez, J.R. and Hogan, D. (1980) Chem. Phys. Lipids 26, 1–40CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Charles R. Hackenbrock
    • 1
  • Sharmila Shaila Gupte
    • 1
  • Brad Chazotte
    • 1
  1. 1.Laboratories for Cell Biology Department of Anatomy, School of MedicineThe University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations