Purification and Properties of Two Isoenzymes of Tench Liver Arginase

  • Maria Luisa Campo
  • Amalia Maria Diez
  • German Soler


Two isoenzymes of tench liver arginase (E.C. have been isolated and purified. Their specific activity for arginine is 48 (isoenzyme I) and 92 (isoenzyme II) µmoles urea/min. x mg respectively and both of them show different physicochemical and kinetic properties. Isoenzyme I has a pI close to 7.5, 110 K molecular weight, and possibly two subunits of 50 and 53 K. It shows specificity for arginine with a Km of 39 × 10−3 M and ornithine behaves as a competitive inhibitor (K1 3.2 × 10−3 M). Isoenzyme II is a neutral or acid protein with pI lower than 7.5, 170 K molecular weight, and a single type of subunit of 35 K. It is less specific than isoenzyme I, being able to hydrolyze ornithine as well as argininic acid (hydrolysis ratio 1) and canavanine (hydrolysis ratio 5.6). Its Km value for arginine is extremely high (1–2 M) and ornithine shows no effect on the enzymatic activity.


Neurospora Crassa Arginase Activity Blue Dextran HPLC Chromatography Argininic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bach, S.J. and Killip, J.D., (1961). Biochim. Biophys. Acta 47, 336–343.CrossRefGoogle Scholar
  2. 2.
    Baret, R., Mourge, M. and Broc, A. (1965). C.R. Soc. Biol., 160, 1184–1187Google Scholar
  3. 3.
    Baret, R., Pellegrin, J., Girard, C. and Riou, J. (1971). C.R. Soc. Biol. 165, 1096–1102.Google Scholar
  4. 4.
    Bradford, M. (1976). Anal. Biochem. 12, 248–254.CrossRefGoogle Scholar
  5. 5.
    Campbell, J.W. (1966). Comp. Biochem. Physiol. 18, 179–199.CrossRefGoogle Scholar
  6. 6.
    Carvaljal, N., Bustamante, M., Hinricihsen, P. and Torres, A. (1984) Comp. Biochem. Physiol. 78B, 591–594.Google Scholar
  7. 7.
    Gasiorowska, I., Porcmbska, Z., Jachimowicz, J. and Mochnacka, I., (1970). Acta Biochem. Polon. 17, 19–30.Google Scholar
  8. 8.
    Grazi, E. and Magri, E. (1972). Biochem. J. 126, 667–674.Google Scholar
  9. 9.
    Hirsch-Kolb, H., Heine, J.P., Kolb, H.J. and Greenberg, D.M. (1970). Comp. Biochem. Physiol. 31, 345–359.Google Scholar
  10. 10.
    Huggins, A.K., Skutsch, G. and Baldwin, E. (1969). Comp. Biochem. Physiol. 28, 587–602.CrossRefGoogle Scholar
  11. 11.
    Hunter, A. and Downs, C.E. (1945). J. Biol. Chem. 157,427–445.Google Scholar
  12. 12.
    Konarska, L., Tomaszeewski, I., Colombo, J.P. and Terseggen, H.G. (1985). J. Clin. Chem. Clin. Biochem. 23, 337–342.Google Scholar
  13. 13.
    Laemmli, U.K. (1970). Nature 221, 680–685.CrossRefGoogle Scholar
  14. 14.
    Mora, J., Martuscelli, J., Ortiz-Pineda, J. and Soberon, G. (1965). Biochem. J. 96, 28–35.Google Scholar
  15. 15.
    Mora, J., Tarrab, R., Martuscelli, J., and Soberon, G. (1965). Biochem. J. 96, 588–594.Google Scholar
  16. 16.
    Mora, J., Tarrab, R. and Bofali, L.,. (1966). Biochem. Biophys. Acta 118, 206–209.Google Scholar
  17. 17.
    Mielsen, B.L. and Brown, L.R. (1984). Anal. Biochem. 141, 311–315.CrossRefGoogle Scholar
  18. 18.
    Pace, C.N., Buonanno, A. and Simons-Hansen, J. (1980). Anal. Biochem. 109, 261–265.CrossRefGoogle Scholar
  19. 19.
    Schimke, R.T. (1970). Methods Enzymol. Vol. XVII, 313–317.Google Scholar
  20. 20.
    Soberon, G. and Palacios, R., (1976). InThe Urea Cycle. (Grisolia, S., Bagena, R. and Mayor, F., eds.). Wiley and Sons. New York, p. 221–235.Google Scholar
  21. 21.
    Soler, G., Mataix, F.J. and Ruiz-Amil, M., (1981). Rev. Espah. Fisiol. 31, 37–44.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Maria Luisa Campo
    • 1
  • Amalia Maria Diez
    • 1
  • German Soler
    • 1
  1. 1.Department of Biochemistry, Molecular Biology and GeneticsUniversity of ExtremaduraCáceresSpain

Personalised recommendations