Structural Influences on the Electrochemistry of Ubiquinone

  • Roger C. Prince
  • Thomas R. Halbert
  • Thomas H. Upton


Ubiquinone, 2,3-dimethoxy-5-methyl-6-polyprenyl-l,4- benzoquinone is almost ubiquitous in living organisms; why? One possibility is the presence of the 2,3 dimethoxy motif. Methoxy groups, in isolation, have two separate effects on the electrochemistry of the quinone nucleus; an inductive electron withdrawing effect, independent of orientation, and a resonant, electron donating effect where the lone pair of electrons on the methoxy oxygen becomes delocalized over the quinone enone system. This latter effect is very dependent on the orientation of the methoxy group relative to the ring, and cannot be achieved by both methoxy groups in the 2,3 — dimethoxy motif. This paper examines the possibility that the different binding sites for ubiquinone might modulate the relative orientations of the methoxy groups, and thereby impose different specificities and energetics on the redox properties of the quinone.


Torsion Angle Methoxy Group Acta Cryst Structural Influence Steric Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knaff, D.B. (1975) FEBS Lett. 60, 331–335CrossRefGoogle Scholar
  2. 2.
    Oalley, P.J., Babcock, G.T. and Prince, R.C. (1984) Biochim. Biophys. Acta 766, 283–288CrossRefGoogle Scholar
  3. 3.
    Boussac, A. and Etienne, A.L. (1984) Biochim. Biophys., Acta 766, 576–584CrossRefGoogle Scholar
  4. 4.
    Prince, R.C., Dutton, P.L. and Bruce, J.M. (1983) FEBS Lett. 160 273–276CrossRefGoogle Scholar
  5. 5.
    Prince, R.C., Lloyd-Williams, P., Bruce, J.M. and Dutton, P.L. (1986) Meth. Enzymol. 125, 109–119CrossRefGoogle Scholar
  6. 6.
    Silverman, J., Stam-Thole, I. and Stam, C.H. (1971) Acta Cryst. B27, 1846–1851Google Scholar
  7. 7.
    Schmalle, H.W., Jarchow, O.H., Hausen, B.M. and Schulz, K.H. (1984) Acta Cryst. C40, 1090–1094Google Scholar
  8. 8.
    Breen, D.L. (1975) J. Theor. Biol. 53, 101–113CrossRefGoogle Scholar
  9. 9.
    Schmallef H.W., Jarchowf O.H., Hausen, B.M., Schulz, K.H. (1984) Acta Cryst. C40, 1084–1087Google Scholar
  10. 10.
    Schmalle, H.W. and Hausen, B.M. (1980) Tet. Lett. 21, 149–152CrossRefGoogle Scholar
  11. 11.
    GamberdIa, M.T.P., Mascarenhas, Y.P. and Santos, R.H.A. (1983) Acta Cryst. C39, 741–742Google Scholar
  12. 12.
    Schmalle, H.W. and Hausen, B.M. (1984) Acta Cryst. C40, 1092–1094Google Scholar
  13. 13.
    Schmalle, H.W., Jarchow, O.H., Hausen, B.M. and Schulz, K.H. (1984) Acta Cryst. C40, 1087–1092Google Scholar
  14. 14.
    Sygusch, J., Brisse, F., Hanessian, S. (1976) Acta Cryst. B32, 1139–1142Google Scholar
  15. 15.
    Ueda, I., Kawano, S., Ikeda, Y., Matsuki, H. and Ogawa, T. (1984) Acta Cryst. C40, 1578–1580Google Scholar
  16. 16.
    Tulinsky, A. and Van Den Hende, J.H. (1967) J. Am. Chem. Soc. 89, 2905–2907CrossRefGoogle Scholar
  17. 17.
    Hayashi, T. and Nawata, Y. (1983) J. Chem. Soc. Perkin Trans II 335–345Google Scholar
  18. 18.
    Bobrowitz, F.W. and Goddard, W.A., III, (1977) in Modern Theoretical Chemistry, 3 (Schaeffer, H.F., ed) Plenum Press, New York.Google Scholar
  19. 19.
    Kleinfeld, D., Okamura, M.Y. and Feher, G. (1984) Biochemistry 23, 5780–5786CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Roger C. Prince
    • 1
  • Thomas R. Halbert
    • 1
  • Thomas H. Upton
    • 1
  1. 1.Exxon Research and EngineeringAnnandaleUSA

Personalised recommendations