Advertisement

Interaction of Quinine with Mitochondrial K+ Transport Mechanisms

  • Joyce J. Diwan
  • Charlest Moore
  • Teresa Haley
  • Harry F. Herbrandson
  • D. Rao Sanadi

Summary

Quinine inhibits unidirectional flux of K+ into and out of respiring rat liver mitochondria [Diwan, J.J. (1986) Biochem. Biophys. Res. Comm. 135, 830-836]. A protein, of molecular weight approximately 53,000, has been purified from detergent solubilized rat liver mitochondrial membranes, via affinity chromatography on Sepharose with covalently bound quinine. Partial elution of this protein is obtained with Triton X-100 solutions containing KCl and quinine. Further elution is achievable with solutions containing either of the anionic detergents, cholate or sodium dodecylsulfate. Pretreatment of mitochondria with [14C] dicyclohexyl- carbodiimide, under conditions which lead to slowing of K+ influx and efflux rates, results in labeling of the 53,000 dalton protein. Whether this protein has a role in K+ transport requires further study.

Labeling of an 80,000 dalton protein in Mg++-depleted mitochondria with [14C]dicyclohexylcarbodiimide has been observed, in agreement with published observations [Martin, W. H., Beavis, A.D., and Garlid, K.D. (1984) J. Biol. Chem. 259, 2062-2065]. Any relationship between this protein, which is postulated by Martin et al. to have a role in K+/H+ antiport, and the 53,000 dalton protein purified by affinity chromatography, remains to be determined.

Keywords

Affinity Chromatography Affinity Column Sodium Cholate Column Eluate Unidirectional Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

BSA

bovine serum albumin

DCCD

dicyclohexylcarbodiimide

SDS

sodium dodecylsulfate

SMP

submitochrondrial particles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Diwan, J.J. (1977) Biochem. Soc. Trans. 5, 203–205Google Scholar
  2. 2.
    Diwan, J.J., and Lehrer, P.H. (1978) Membr. Biochem. 1, 43–60CrossRefGoogle Scholar
  3. 3.
    Jung, D.W., Chavez, E., and Brierley, G.P. (1977) Arch. Biochem. Biophys. 183, 452–459CrossRefGoogle Scholar
  4. 4.
    Diwan, J.J., Daze, M., Richardson, R., and Aronson, D. (1979) Biochemistry 18, 2590–2595CrossRefGoogle Scholar
  5. 5.
    Diwan, J.J. (1985) J. Membr. Biol. 84, 165–171CrossRefGoogle Scholar
  6. 6.
    Gauthier, L.M., and Diwan, J.J. (1979) Biochem. Biophys. Res. Comm. 87, 1072–1079CrossRefGoogle Scholar
  7. 7.
    Jung, D.W., Shi, G.-Y., and Brierley, G.P. (1980) J. Biol. Chem. 255, 408–412Google Scholar
  8. 8.
    Diwan, J.J., Markoff, M., and Lehrer, P.H. (1977) Indian J. Biochem. Biophys. 14, 342–346Google Scholar
  9. 9.
    Rasheed, B.K.A., Diwan, J.J., and Sanadi, D.R. (1984) Eur. J. Biochem. 144, 643–647CrossRefGoogle Scholar
  10. 10.
    Diwan, J.J., Srivastava, J., Moore, C., and Haley, T. (1986) J. Bioenerget. Biomembr. 18, 123–134CrossRefGoogle Scholar
  11. 11.
    Diwan, J.J., and Tedeschi, H. (1975) FEBS Lett. 60, 176–179CrossRefGoogle Scholar
  12. 12.
    Chavez, E., Jung, D.W., and Brierley, G.P. (1977) Arch. Biochem. Biophys. 183, 460–470CrossRefGoogle Scholar
  13. 13.
    Skulskii, I.A., Saris, N.-E.L., and Glasunov, V.V. (1983) Arch. Biochem. Biophys. 226, 337–346CrossRefGoogle Scholar
  14. 14.
    Mitchell, P. (1961) Nature 191, 144–148CrossRefGoogle Scholar
  15. 15.
    Mitchell, P., and Moyle, J. (1969) Eur. J. Biochem. 9, 149–155CrossRefGoogle Scholar
  16. 16.
    Diwan, J.J. (1981) Biochem. Soc. Trans. 9, 153–154Google Scholar
  17. 17.
    Azzone, G.F., Bortolotto, F., and Zanotti, A. (1978) FEBS Lett. 96, 135–140CrossRefGoogle Scholar
  18. 18.
    Bernardi, P., and Azzone, G.F. (1983)Biochim. Biophys. Acta 724, 212–223CrossRefGoogle Scholar
  19. 19.
    Dordick, R.S., Brierley, G.P., and Garlid, K.D. (1980) J. Biol.Chem. 255, 10299–10305Google Scholar
  20. 20.
    Jung, D.W., Shi, G.-Y., and Brierley, G.P. (1981) Arch. Biochem. Biophys. 209, 356–361CrossRefGoogle Scholar
  21. 21.
    Nakashima, R.A., Dordick, R.S., and Garlid, K.D. (1982) J. Biol. Chem. 257, 12540–12545Google Scholar
  22. 22.
    Brierley, G.P., Jurkowitz, M.S., Farooqui, T., and Jung, D.W. (1984) J. Biol. Chem. 259, 14672–14678Google Scholar
  23. 23.
    Jung, D.W., Farooqui, T., Utz, E., and Brierley, G.P. (1984) J. Bioenerget. Biomembr. 16, 37 9–390Google Scholar
  24. 24.
    Martin, W.H., Beavis, A.D., and Garlid, K.D. (1984) J. Biol. Chem. 259, 2062–2065Google Scholar
  25. 25.
    Garlid, K.D., DiResta, D.J., Beavis, A.D., and Martin, W.H. (1986) J. Biol. Chem. 261, 1529–1535Google Scholar
  26. 26.
    Diwan, J.J., and Moore, C.M., Unpublished experimentsGoogle Scholar
  27. Nakashima, R.A., and Garlid, K.D. (1982) J. Biol. Chem. 251, 9252- 9254Google Scholar
  28. 28.
    Diwan, J.J. (1986) Biochem. Biophys. Res. Comm. 135, 830–836CrossRefGoogle Scholar
  29. 29.
    Porath, J. (1974) Meth. Enzymol. 34, 13–30CrossRefGoogle Scholar
  30. 30.
    Pedersen, P.L., Greenawalt, J.W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J.W., and Bustamente, E. (1978) in: Methods in Cell Biology (Prescott, D.M., ed.) Vol. 20, pp. 411–481, Academic Press, New YorkGoogle Scholar
  31. 31.
    Laemmli, U.K. (1970) Nature 227, 680–685CrossRefGoogle Scholar
  32. 32.
    Bonner, W.M. (1984) Methods in Enzymol. 104, 460–465CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Joyce J. Diwan
    • 1
  • Charlest Moore
    • 1
  • Teresa Haley
    • 1
  • Harry F. Herbrandson
    • 1
  • D. Rao Sanadi
    • 1
    • 2
  1. 1.Departments of Biology and ChemistryRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Cell PhysiologyBoston Biomedical Research InstituteBostonUSA

Personalised recommendations