Advertisement

Cytochrome C Peroxidase Activity of Cytochrome Oxidase and its Coupling to Proton Pumping

  • Yutaka Orii
  • Toshiaki Miki

Abstract

Coupled with reduction of molecular oxygen, cytochrome oxidase of mammalian as well as bacterial origin translocates protons from one side of the energy transducing membrane to the other developing an electrochemical potential gradient across the membrane to drive H+-ATP synthase (1-8). The proton pump capacity has been demonstrated with phospholipid vesicles reconstituted with purified cytochrome oxidase preparation. (9-28). These vesicles are very useful for studying the coupling mechanism between the redox reactions and the proton translocation, but no systematic studies have been done successfully to solve this problem. In pursuing this mechanism and identifying the elementary step(s) for the coupling, it would be advantageous experimentally if the oxygen reduction can be resolved into partial reactions.

Keywords

Peroxidase Activity Cytochrome Oxidase Soluble Enzyme Phospholipid Vesicle Peroxidase Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

MOPS

3-(N-morpholino)propane sulfonic acid

DCCD

N,N’-dicyclohexylcarbodiimide

FCCP

carbonyl cyanide p-trifluoro- methoxyphenylhydrazone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wikström, M.F.K. (1977) Nature 266, 271–273CrossRefGoogle Scholar
  2. 2.
    Alexandre, A., Reynafarje, B., and Lehninger, A.L. (1978)Proc. Natl. Acad. Sci. USA 75, 5296–5300CrossRefGoogle Scholar
  3. 3.
    Sigel, E., and Carafoli, E. (1978) Eur. J. Biochem. 89, 119–123CrossRefGoogle Scholar
  4. 4.
    Krab, K., and Wikstrom, M. (1979) Biochim. Biophys. Acta 548, 1–15CrossRefGoogle Scholar
  5. 5.
    Azzone, G.F., Pozzan, T., and Di Virgilio, F. (1979) J. Biol. Chem. 254, 10206–10212Google Scholar
  6. 6.
    Al-Shawi, M., and Brand, M.D. (1981) Biochem. J. 200, 539–546Google Scholar
  7. 7.
    Wikström, M. (1984) Nature 308, 558–560CrossRefGoogle Scholar
  8. 8.
    Wikström, M., and Casey, R. (1985) FEBS Lett. 183, 293–298CrossRefGoogle Scholar
  9. 9.
    Krab, K., and Wikstrom, M. (1978) Biochim. Biophys. Acta 504, 200–214CrossRefGoogle Scholar
  10. 10.
    Casey, R.P., Chappell, J.B., and Azzi, A. (1979) Biochem. Biophys. Res. Commun. 87, 1044–1051CrossRefGoogle Scholar
  11. 11.
    Casey, R.P., Thelen, M., and Azzi, A. (1979) Biochem. Biophys. Res. Commun. 87, 1044–1051CrossRefGoogle Scholar
  12. 12.
    Sigel, E., and Carafoli, E. (1980) Eur. J. Biochem. 111, 299–306CrossRefGoogle Scholar
  13. 13.
    Casey, R.P., Thelen, M., and Azzi, A. (1980) J. Biol. Chem. 255, 3994–4000Google Scholar
  14. 14.
    Casey, R.P., Broger, C., Thelen, M., and Azzi, A. (1981) J. Bioenerg. Biomembr. 13, 219–228CrossRefGoogle Scholar
  15. 15.
    Prochaska, L.J., Bisson, R., Capaldi, R.A., Steffens, G.C.M., and Buse, G. (1981) Biochim. Biophys. Acta 637, 360–373CrossRefGoogle Scholar
  16. 16.
    Reynafarje, B., Alexandre, A., Davies, P., and Lehninger, A.L. (1982) Proc. Natl. Acad. Sci, USA 79, 7218–7222CrossRefGoogle Scholar
  17. 17.
    Proteau, G., Wrigglesworth, J.M., and Nicholls, P. (1983) Biochem. J. 210, 199–205Google Scholar
  18. 18.
    Casey, R.P., and Azzi, A. (1983) FEBS Lett. 154, 237–242CrossRefGoogle Scholar
  19. 19.
    Moroney, P.M., Scholes, T.A., and Hinkle, P.C. (1984) Biochemistry 23, 4991–4997CrossRefGoogle Scholar
  20. 20.
    Sone, N., and Nicholls, P. (1984) Biochemistry 23, 6550–6554CrossRefGoogle Scholar
  21. 21.
    Van Verseveld, H.W., Krab, K., and Stouthamer, A.H. (1981) Biochim. Biophys. Acta, 635, 525–534CrossRefGoogle Scholar
  22. 22.
    Solioz, M., Carafoli, E., and Ludwig, B. (1982) J. Biol. Chem. 257, 1579–1582Google Scholar
  23. 23.
    Sone, N., and Hinkle, P.C. (1982) J. Biol. Chem. 257, 12600–12604Google Scholar
  24. 24.
    Sone, N., and Yanagita, Y. (1982) Biochim. Biophys. Acta 257, 216–226Google Scholar
  25. 25.
    Honnami, K., and Oshima, T. (1984) Biochemistry 23, 454–460CrossRefGoogle Scholar
  26. 26.
    Yanagita, Y., Sone, N., and Kagawa, Y. (1983) Biochem. Biophys. Res. Commun. 113, 575–580CrossRefGoogle Scholar
  27. 27.
    Yoshida, T., and Fee, J.A. (1984) J. Biol Chem. 259, 1031–1036Google Scholar
  28. 28.
    Sone, N., and Yanagita, Y. (1984) J. Biol. Chem. 259, 1405–1408Google Scholar
  29. 29.
    Orii, Y., and Okunuki, K. (1963) J. Biochem. (Tokyo) 54, 207–213Google Scholar
  30. 30.
    Orii, Y. (1982) J. Biol. Chem. 257, 9246–9248Google Scholar
  31. 31.
    Bickar, D., Bonaventura, J., and Bonaventura, C. (1983) Biochemistry 21, 2661–2666CrossRefGoogle Scholar
  32. 32.
    Markossian, K. A., Poghossian, A.A., Paitian, N.A., and Nalbandyan, R.M. (1978) Biochem. Biophys. Res. Commun. 81, 1336–1343CrossRefGoogle Scholar
  33. 33.
    Nicholls, P., Chanady, G.A. (1981) Biochim. Biophys. Acta 634, 256–265CrossRefGoogle Scholar
  34. 34.
    Young, L.J., and Caughey, W.S. (1986) Biochemistry 25, 152–161CrossRefGoogle Scholar
  35. 35.
    Orii, Y. (1982) in: Oxygenases and Oxygen Metabolism (Nozaki, M., Yamamoto, S., Ishimura, Y., Coon, M.J., Ernster, L., and Estabrook, R., eds.) pp. 137–149, Academic Press, New YorkGoogle Scholar
  36. 36.
    Orii, Y., Manabe, M., Yoneda, M. (1977) J. Biochem. (Tokyo) 81, 505–517Google Scholar
  37. 37.
    Miki, T., and Orii, Y. (1986) J. Biol. Chem. 261, 3915–3918Google Scholar
  38. 38.
    Miki, T., and Orii, Y. (1986) J. Biochem. (Tokyo) 100, 735–745Google Scholar
  39. 39.
    Hansen, F.B., and Nicholls, P. (1978) Biochim. Biophys. Acta 502, 400–408CrossRefGoogle Scholar
  40. 40.
    Lehninger, A.L. (1984) Biochem. Soc. Trans. 12, 386–388Google Scholar
  41. 41.
    George, P. (1965) in: Oxidases and Related Redox Systems (King, T.E. Mason, H.S., and Morrison, M., eds.) Vol. 1. pp. 3–36, John Wiley & Sons, Inc. New YorkGoogle Scholar
  42. 42.
    Dutton, P.L., Wilson, D.F., and Lee, C.P. (1970) Biochemistry 9, 5077–5082CrossRefGoogle Scholar
  43. 43.
    Wikström, M., Krab, and Saraste, M. (1981) Annu. Rev. Biochem. 50, 623–655CrossRefGoogle Scholar
  44. 44.
    Gorren, A.C.F., Dekker, H., and Wever, R. (1985) Biochem. Biophys. Acta 809, 90–96CrossRefGoogle Scholar
  45. 45.
    Robinson, N.C, and Capaldi, R.A. (1977) Biochemistry 16, 375–381CrossRefGoogle Scholar
  46. 46.
    Saraste, M., Pentila, T., and Wikstrom, M. (1981) Eur. J. Biochem. 115, 261–268CrossRefGoogle Scholar
  47. 47.
    Orii, Y., and Miki, T. (1983) in: Frontiers in Biochemical and Biophysical Studies of Proteins and Membranes (Liu, T.-Y., Sakakibara S., Schechter, A.N., Yagi, K., Yajima, H., and Yasunobu, K.T., eds.) pp. 279–287, Elsevier Science Publishing Co., Inc. New YorkGoogle Scholar
  48. 48.
    Wikström, M., Krab, K., and Saraste, M. (1981) Cytochrome Oxidase, A Synthesis, Academic Press, New YorkGoogle Scholar
  49. 49.
    Keilin, D., (1966) The History of Cell Respiration and Cytochrome, The University Press, CambridgeGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Yutaka Orii
    • 1
  • Toshiaki Miki
    • 1
  1. 1.Department of Public Health Faculty of MedicineKyoto UniversityKyoto, 606Japan

Personalised recommendations