Control of Proteoliposomal Cytochrome Oxidase: Normal and Inverted Orientations

  • P. Nicholls
  • C. E. Cooper
  • J. Kjarsgaard


Cytochrome c oxidase-containing proteoliposomes were prepared by sonication in the presence of cytochrome c and pyranine, followed by column chromatography to remove external c and pyranine. Externally-facing oxidase (60%) was then assayed using external cytochrome c, and internally-facing oxidase (40%) using membrane- permeable TMPD. External activity generates an FCCP-sensitive pH gradient, alkaline inside, associated with a valinomycin-stimulated uptake of K+ ions. In steady state, such vesicles maintain both pH gradient and membrane potential and cycle potassium both electrophoretically and electroneutrally. Valinomycin does not release full respiration, although it abolishes membrane potential under conditions in which the pH gradient does not exceed 0.5 pH units. At low concentrations, valinomycin is inhibitory. We conclude that pH gradient is more important than membrane potential in controlling the oxidase turnover.

Internal activity generates an internal TMPD+ steady state, as well as internal acidity. The former is increased by valinomycin or by external cyt. c, both of which reduce or alter the sign of the membrane potential. In the presence of ascorbate, TMPD and cyt. c, enzyme molecules of both orientations are working simultaneously in the same vesicles .

TMPD+ retention requires the uptake of an anion or loss of a cation to maintain electroneutrality. In the absence of a proton pump, therefore, internal alkalinization would be predicted despite the reversed orientation. The internal acidification observed experimentally suggests the operation of a steady state proton pump, moving H+ ions inwards in exchange for an electrophoretic steady state loss of K+.


Respiratory Control Ratio Steady State Equation Submitochondrial Particle Negative Inside Internal Acidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.









trisodium 8-hydroxy1-1,3,6-pyrenetri-sulphonate


oxidized TMPD (Wurster’s blue)


respiratory control ratio


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carroll, R.C. and Racker, E. (1977) J. Biol. Chem. 252, 6981–6990Google Scholar
  2. 2.
    Hansen, F.B., Miller, M. and Nicholls, P. (1978) Biochim. Biophys. Acta 502, 385–399CrossRefGoogle Scholar
  3. 3.
    Wrigglesworth, J.M. (1978) in: Membrane Proteins (FEBS Meeting, 1977; Nicholls, P., Møller, J.V., Jørgensen, P.L. & Moody, A.J., eds.) 45, 95–103 (Pergamon, Oxford)Google Scholar
  4. 4.
    Nicholls, P., Hildebrandt, V. & Wrigglesworth, J.M. (1980) Arch. Biochem. Biophys. 204, 533–543CrossRefGoogle Scholar
  5. 5.
    Wrigglesworth, J.M. & Nicholls, P. (1979) Biochim. Biophys., Acta, 547, 36–46CrossRefGoogle Scholar
  6. 6.
    Miller, M., Petersen, L.C., Hansen, F.B. & Nicholls, P. (1979) Biochem. J. 184, 125–131Google Scholar
  7. 7.
    Azzone, G.F., Zoratti, M., Petronilli, V. & Pietrobon, D. (1985) J. Inorg. Biochem. 23, 349–356CrossRefGoogle Scholar
  8. 8.
    Moroney, P.M., Scholes, T.A. & Hinkle, P.C. (1984) Biochemistry 23, 4991–4997CrossRefGoogle Scholar
  9. 9.
    Singh, A.P. & Nicholls, P. (1985) J. Biochem. Biophys. Methods, 11, 95–108CrossRefGoogle Scholar
  10. 10.
    Singh, A.P. & Nicholls, P. (1986) Arch. Biochem. Biophys., 245, 436–445CrossRefGoogle Scholar
  11. 11.
    Clement, N.R. & Gould, J.M. (1981) Biochemistry, 20, 1539–1543CrossRefGoogle Scholar
  12. 12.
    Nicholls, P., Shaughnessy, S. & Singh, A.P. (1986), unpublished results.Google Scholar
  13. 13.
    Kuboyama, M., Yong, F.C. & King, T.E. (1972) J. Biol. Chem. 247, 6375–6383Google Scholar
  14. 14.
    Proteau, G., Wrigglesworth, J.M. & Nicholls, P. (1983) Biochem. J., 210, 199–205Google Scholar
  15. 15.
    Kraajenhof, R.I., Schuurmans, J.J., Valkiker, L.J., Veen, J.P.C., Marum, D.V. & Jasper, G.G. (1982) Anal. Biochem. 127, 93–99CrossRefGoogle Scholar
  16. 16.
    Singh, A.P., Chanady, G.A. & Nicholls, P. (1985) J. Memb. Biol. 84, 183–190CrossRefGoogle Scholar
  17. 17.
    Nicholls, P. & Shaughnessy, S. (1985) Biochem. J. 228, 201–210Google Scholar
  18. 18.
    Shaughnessy, S. & Nicholls, P. (1985) Biochem. Biophys. Res. Comm. 128, 1025–1030CrossRefGoogle Scholar
  19. 19.
    Nicholls, P., Verghis, E. & Singh, A.P. (1984) EBEC Short Reports, Vol. 3A, 251–252Google Scholar
  20. 20.
    Singh, A.P. & Nicholls, P. (1984) Biochem. Biophys. Acta 777, 194–200CrossRefGoogle Scholar
  21. 21.
    Nicholls, P. (1976) Biochim. Biophys. Acta. 430 30–45CrossRefGoogle Scholar
  22. 22.
    Sagi-Eisenberg, R. & Gutman, M. (1979) Eur. J. Biochem. 97, 127–132CrossRefGoogle Scholar
  23. 23.
    Madden, T.D., Hope, M.J. & Cullis, P.R. (1984) Biochemistry, 23, 1413–1418CrossRefGoogle Scholar
  24. 24.
    Papa, S., Capitanio, N., de Nitto, E. & Izzo, G. (1985) J. Inorg. Biochem. 23, 317–325CrossRefGoogle Scholar
  25. 25.
    King, T.E. (1966) Adv. Enzymol. 28, 155–236Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • P. Nicholls
    • 1
  • C. E. Cooper
    • 1
  • J. Kjarsgaard
    • 1
  1. 1.Department of Biological SciencesBrock UniversityOntarioCanada

Personalised recommendations