Studies on a Novel Flavodoxin from the Respiratory Mutant TZN-200 from Azotobacter Vinelandii

  • Willy Hofstetter
  • Liesje DerVartanian
  • Daniel DerVartanian

Summary

Flavodoxins have been purified from the wild-type and mutant strain TZN-200 of A. vinelandii. The latter mutant strain is unable to reduce 2,3,5-triphenyl-tetrazolium chloride which is known to react with flavin. As a consequence FMN synthesized in the mutant strain appears to be modified as determined by paper chromatography and light-absorption spectroscopy. The mutant flavodoxin does not differ from the wild-type derived flavodoxin in primary structure as determined by partial peptide mapping or by Resonance Coherent Anti-Stokes Raman Spectroscopy which suggests binding of FMN to protein is identical in both flavodoxins. However significant differences were noted in the ability of the mutant flavodoxin to donate electrons to nitrogenase (decreased by 75%). This latter observation may be explained by the more positive mid-point redox potential found for the flavosemiquinone/flavohydroquinone redox couple (-435 mV as compared to the same redox couple for wild type flavodoxin of -480 mV).

Keywords

Electrophoresis Polypeptide Polyacrylamide Acetylene Quinone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vain, B. and Bothe, H. (1972) Arch. Microbiol. 82, 155–172Google Scholar
  2. 2.
    Shethna, Y.I., Wilson, P.W., and Beinert, H. (1966) Biochim. Biophys. Acta 113, 223–225Google Scholar
  3. 3.
    Edmondson, D.E. and Tollin, G. (1971) Biochemistry 10, 124–132CrossRefGoogle Scholar
  4. 4.
    Hinkson, J.W., and Bulen, W.A. (1976) J. Biol. Chem. 242, 3345–3351Google Scholar
  5. 5.
    Benemann, J.R., Yoch, D.C., Valentine, R.C. and Arnon, D.E. (1969) Proc. Natl. Acad. Sci. U.S.A. 64, 1079–1086CrossRefGoogle Scholar
  6. 6.
    Benemann, J.R., Yoch, D.C., Valentine, R.C. and Arnon, D.E. (1971) Biochim. Biophys. Acta 226, 205–212CrossRefGoogle Scholar
  7. 7.
    Mayhew, S.G., Foust, G.P. and Massey, V. (1969) J. Biol. Chem. 224, 803–810Google Scholar
  8. 8.
    Nieva-Gomez, D., Roberts, G.P., Klevickis, S. and Brill, W. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 2555–2558CrossRefGoogle Scholar
  9. 9.
    Deistung, J., Cannon, F.C., Cannon, M.C., Hill, S. and Thorneley, R.N.F. (1985) Biochem. J. 231, 743–753Google Scholar
  10. 10.
    Drummond, M.H. (1985) Biochem. J. 232, 891–896Google Scholar
  11. 11.
    Mclnerney, M.J., Holmes, S.K., Hoffman, P. and Deartanian, D.V. (1984) Eur. J. Biochem. 141, 447–452.CrossRefGoogle Scholar
  12. 12.
    Lester, R.L. and Smith, A.L. (1961) Biochim. Biophys. Acta 47, 475–496CrossRefGoogle Scholar
  13. 13.
    Tollin, G. and Edmondson, D.E. (1970) Methods in Enzymology 69, 392–408CrossRefGoogle Scholar
  14. 14.
    Massey, V. and Hemmerich, P. (1977) J. Biol. Chem. 252, 5612–5614Google Scholar
  15. 15.
    Scherings, G., Haaker, H. and Veeger, C. (1977) Eur. J. Biochem. 77, 621–630CrossRefGoogle Scholar
  16. 16.
    Kilgour, G.L., Felton, S.P. and Huennekens, F.M. (1957) J. Am. Chem. Soc 79, 2254–2256CrossRefGoogle Scholar
  17. 17.
    Vetter, H. and Knappe, J. (1971) Hoppe-Seyler Z. Physiuol Chem. 352, 433–446CrossRefGoogle Scholar
  18. 18.
    Irwin, R.M., Visser, A.J.W.G., Lee, J. and Carreira, L.A. (1980) Biochemistry 19, 4639–4646CrossRefGoogle Scholar
  19. 19.
    O’Farrell, P.H. (1975) J. Biol. Chem. 250, 4007–4021Google Scholar
  20. 20.
    Hofstetter, W. and Deartanian, D.V. (1985) Biochem. Biophys. Res. Commun. 128, 643–649CrossRefGoogle Scholar
  21. 21.
    Shah, V.K., Stacey, G. and Brill, W.J. (1983) J. Biol. Chem. 258, 12064–12068Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Willy Hofstetter
    • 1
  • Liesje DerVartanian
    • 1
  • Daniel DerVartanian
    • 1
  1. 1.Department of BiochemistryUniversity of GeorgiaAthensUSA

Personalised recommendations