Advertisement

Pathways of Electron Transfer in Desulfovibrio

  • Jeffrey F. Kramer
  • Daniel H. Pope
  • John C. Salerno

Abstract

Sulfate reducing, bacteria of the genus Desulfovibrio conduct anaerobic respiration, conserving energy through oxidative phosphorylation in anaerobic sulfate reduction (1,2). The reduction of sulfate is mediated by an electron transport system composed of dehydrogenases, electron carriers, and a series of reductases (3,5). Some of the enzymes and electron carries involved are found exclusively in the membrane fraction although a great many are soluble.

Keywords

Methyl Viologen Electron Carrier Nitrite Reductase Proton Translocation Fumarate Reductase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peck, H.D., Jr. (1960) J. Biol. Chem. 235, 2734–2738Google Scholar
  2. 2.
    Peck, H.D., Jr. (1966) Biochem. Biophys. Res. Commun. 22, 112–118CrossRefGoogle Scholar
  3. 3.
    Legall, J. and Forget, N. (1979) Methods Enzymol. 53D, 613–634Google Scholar
  4. 4.
    Lall, J., Deartianian, D.V. and Peck, H.D., Jr. (1979) Curr. Top. Bioenerg. 9, 237–265Google Scholar
  5. 5.
    Peck, H.D., Jr. and Lall, J. (1982) Philos. Trans. Roy. Soc. Lond. B298, 443–466Google Scholar
  6. 6.
    Odom, J.M. and Peck, H.D., Jr. (1984) Ann. Rev. Microbiol. 38, 551–592CrossRefGoogle Scholar
  7. 7.
    Badziong, W. and Thauer, R.K. (1980) Arch. Microbiol. 125, 167–174CrossRefGoogle Scholar
  8. 8.
    Odom, J.M. and Peck, H.D., Jr. (1981) FEBS Lett. 12 47–50Google Scholar
  9. 9.
    Steenkamp, D.J. and Peck, H.D., Jr. (1981) J. Biol. Chem. 256, 5450–5458Google Scholar
  10. 10.
    Odom, J.M. and Peck, H.D. Jr. (1981) J. Bacteriol. 174, 161–169.Google Scholar
  11. 11.
    Jones, H.E. (1972) Arch. Microbiol. 84, 207–224CrossRefGoogle Scholar
  12. 12.
    Hatchikian, E.C. and Lall, J. (1972) Biochem. Biophys. Acta 267, 479–484.CrossRefGoogle Scholar
  13. 13.
    Maroc, J., Azerad, R., Kamen, M.D. and Lall, J. (1970) Biochem. Biophys. Acta 197, 87–89CrossRefGoogle Scholar
  14. 14.
    Weber, M.M., Matschiner, J.T. and Peck, H.D. Jr. (1970) Biochem. Biophys Res. Commun. 38, 197–204CrossRefGoogle Scholar
  15. 15.
    Yagi, T. (1970) J. Biochem. 68, 649–657Google Scholar
  16. 16.
    Lalla-Maharajh, M.V., Hall, D.O., Cammaek, R., Rao, K.K. and Lall, J. (1983) Biochem. J. 209, 445–454Google Scholar
  17. 17.
    Postgate, J.R. (1979) The Sulfate-Reducing Bacteria. Cambridge University Press. Cambridge.Google Scholar
  18. 18.
    van der Westen, H.M., Mayhew, S.G. and Veeger, C. (1978) FEBS Lett. 86, 122–126CrossRefGoogle Scholar
  19. 19.
    Drake, H.L. and Akagi, J.M. (1978) J. Bacteriol. 136, 916–923Google Scholar
  20. 20.
    Tsuji, K. and Yagi, T. (1980) Arch. Microbiol. 125, 35–42CrossRefGoogle Scholar
  21. 21.
    Fauque, G.D., Barton, L.L. and Lall, J. (1980) Sulfur in Biology (Ciba Foundation Symposium no. 72). Amsterdam: Exeerpta Mediea,Elsevier.Google Scholar
  22. 22.
    Kroger, A. (1978) Biochim. Biophys. Acta 505, 129–145Google Scholar
  23. 23.
    Kroger, A. (1980) “Bacterial electron transport to fumarate” In Diversity of Bacterial Respiratory Systems (J.C. Knowles, ed.). CRC Press, Inc., West Palm Beach.Google Scholar
  24. 24.
    Lupton, F.S., Conrad, R. and Zeikus, J.G. (1984) J. Bacteriol. 159, 843–849Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Jeffrey F. Kramer
    • 1
  • Daniel H. Pope
    • 1
  • John C. Salerno
    • 1
  1. 1.Biology Department and Biophysics GroupRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations