Advertisement

Electron Transfer and Spectral Changes in Cytochrome b Studied in Mitochondria from Coenzyme Q-Deficient Mutants of the Yeast Saccharomyces Cerevisiae Reconstituted with Coenzyme Q Analogues

  • Diana S. Beattie

Summary

Mitochondria isolated from coenzyme Q-deficient yeast cells had no detectable NADH: or succinate: cytochrome c reductase activity, but contained control amounts of cytochromes b and c 1 by spectral analysis. Addition of the exogenous coenzyme Q derivatives Q2, Q6 and the decyl analogue (DB)1 restored the rate of antimycin-sensitive reductase activity to the levels observed with the wild type. Addition of these same analogues to wild type mitochondria increased 2-3 fold the rate of cytochrome c reduction suggesting that the pool of coenzyme Q in the membrane is limiting for electron transport in the respiratory chain.

Addition of succinate and coenzyme Q to mitochondria from the Q-deficient yeast cells resulted in reduction of cytochromes b and c. The subsequent addition of antimycin resulted in the oxidant-induced extra- reduction of cytochrome b and the concomitant oxidation of cytochrome c without the “red shift” observed in the wild type. Similarly, no “red shift” was observed upon addition of antimycin to dithionite-reduced mitochondria from the mutant cells as was observed with wild type mitochondria. Addition of succinate and antimycin to the Q-deficient mitochondria in the absence of exogenous coenzyme Q analogues led to reduction of 68% of the total cytochrome b again with no shift in the absorption maximum. These results suggest that exogenous coenzyme Q analogues may reconstitute electron flow in mitochondria from Q- deficient yeast cells, but may not be reconstituted into the membrane exactly as is the tightly-bound coenzyme Q reported to be an integral part of the cytochrome b-C 1 complex.

Keywords

Respiratory Chain Reductase Activity Isoprene Unit Yeast Mitochondrion Iron Sulfur Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hatefi, Y., Haaivik, A.G., Fowler, L.R. and Griffiths, D.E. (1962) J. Biol. Chem. 237, 2661–2669Google Scholar
  2. 2.
    Hatefi, Y., (1985) Ann. Review Biochem. 54, 1015–1069CrossRefGoogle Scholar
  3. 3.
    Schneider, H., Lemasters, J.J., and Hackenbrock, C.R. (1982) J. Biol. Chem. 257, 10789–10793Google Scholar
  4. 4.
    Gupte, S., Wu, E.S., Hoechli, M. Jacobson, K, Sowers, A.E., and Hackenbrock, C.R. (1984) Proc. Natl. Acad. Sci.(USA) 81, 2606–2610CrossRefGoogle Scholar
  5. 5.
    Berden, J.A., deVries, S. and Slater, E.C. (1982) in: Function of Quinones in Energy Conserving Systems(Trumpower, B.L, ed.) pp. 153–165, Academic Press, New YorkGoogle Scholar
  6. 6.
    Hauska, G. and Hurt, E. (1982) in: Function of Quinones in Energy Conserving Systems(Trumpower, B.L. ed.) pp. 87–110, Academic Press, New YorkGoogle Scholar
  7. 7.
    Matsura, K., Bowyer, J.R., Ohnishi, T. and Dutton, P.L. (1983) J. Biol. Chem. 258, 1571–1579Google Scholar
  8. 8.
    King, T.E. (1985) in: Coenzyme Q f Biochemistry, Bioenergetics, and Clinical Applications,(Lenaz, G. ed.) pp. 391–408, John Wiley and Sons, Ltd. ChichesterGoogle Scholar
  9. 9.
    Yu, C.A. and Yu, L. (1981) Biochim. Biophys. Acta 639, 99–128Google Scholar
  10. 10.
    Ohnishi, T., and Trumpower, B.L. (1980) J. Biol. Chem. 255, 3278- 3284Google Scholar
  11. 11.
    deVries, S., Albracht, S.P.J., Berden, J.A. and Slater, E.C. (1981) J Biol. Chem. 256, 11996–11998Google Scholar
  12. 12.
    Mitchell, P. (1976) J. Theoretical Biol. 62, 327–367CrossRefGoogle Scholar
  13. 13.
    Trumpower, B.L. (1981) Biochim. Biophys. Acta 639, 129–155Google Scholar
  14. 14.
    Wikstrom, M. and Krab, K. (1986) J. Bioenerg. Biomem. 18, 181–193CrossRefGoogle Scholar
  15. 15.
    Tzagoloff, A., Akai, A., and Needleman, R.B. (1975) J. Biol. Chem. 250, 8228–8235Google Scholar
  16. 16.
    Sidhu, A. and Beattie, D.S. (1985) in: Coenzyme Q Biochemistry f Bioenergetics and Clinical Applications.(Lenaz, G. ed.) pp. 301- 313, John Wiley and Sons, Ltd., ChichesterGoogle Scholar
  17. 17.
    Brown, G.G. and Beattie, D.S. (1977) Biochemistry 16, 4449–4454CrossRefGoogle Scholar
  18. 18.
    Pasquali, P., Landi, L., Cabrini, L. and Lenaz, G. (1981) J. Bioenerg. Biomem. 13, 141–148CrossRefGoogle Scholar
  19. 19.
    DeSantis, A., Bertoli, E., DiGioia, A., Melandri, B.A., and Baccarini-Melandri A. (1982) J. Bioenerg. Biomem. 14, 159–169CrossRefGoogle Scholar
  20. 20.
    Beattie, D.S. and Clejan, L. (1986) Biochemistry 25, 1395–1402CrossRefGoogle Scholar
  21. 21.
    Beattie, D.S., Clejan, L., Chen, Y.S., Lin, D.I.P., and Sidhu, A. (1981) J. Bioenerg. Biomem. 13, 357–373CrossRefGoogle Scholar
  22. 22.
    Meunier-LemesIe, D., Chevillotte-Brivet, P. and Pajot, P. (1980) Eur. J. Biochem.111, 151–159CrossRefGoogle Scholar
  23. 23.
    Clejan, L., Sidhu, A., and Beattie, D.S. (1983) Biochemistry 22, 52–57CrossRefGoogle Scholar
  24. 24.
    Villalobof A., Briquet, M. and Goffeau, A. (1981) Biochim. Biophys. Acta 637, 124–129CrossRefGoogle Scholar
  25. 25.
    Clejan, L, Bosch, G.C., and Beattie, D.S. (1984) J. Biol. Chem. 259, 13017–13020Google Scholar
  26. 26.
    Price, S.D. and Brand, M.D. (1983) Eur. J. Biochem. 132, 595–601CrossRefGoogle Scholar
  27. 27.
    Margolis, P.A. (1976) Master’s Thesis,Dartmouth College, Hanover, N. H.Google Scholar
  28. 28.
    von Jagow, G., Ljugdahl, P.O., Graf, P., Ohnishi, T., and Trumpower, B.L. (1984) J. Biol. Chem. 259, 6318–6326Google Scholar
  29. 29.
    von Jagow, G. and Engel, W.D. (1981) FEBS Lett. 136, 19–24CrossRefGoogle Scholar
  30. 30.
    Yu, C.A., Fang, F.D., and Yu, C.A. (1985) J. Biol. Chem. 260, 963- 973Google Scholar
  31. 31.
    Zhu, Q.A. and Beattie, D.S. (1986) Submitted for Publication Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Diana S. Beattie
    • 1
  1. 1.Department of Biochemistry School of MedicineWest Virginia UniversityMorgantownUSA

Personalised recommendations