Construction of Yeast Mutants of QH2: Cytochrome C Oxidoreductase: Requirement of the 11, 14 and 17 kDa Subunits, but not the 40 kDa Subunit, for Enzymatic Activity

  • Peter J. Schoppink
  • Leslie A. Grivell
  • Jan A. Berden


Yeast mutants have been constructed in which specifically the genes coding for the 11, 14, 17 or 40 kDa subunits of QH2: cytochrome c oxidoreductase have been deleted using a one step gene disruption technique. Deletion of the gene in question was verified by Western and Southern blot analysis as is shown here for the 14 kDa gene. Only in the 40 kDa- mutant is there some QH2:cytochrome c oxidoreductase activity left. In all mutants in which the gene in question has not been deleted, the amounts of the 11 kDa Subunit, the 14 kDa Subunit, the Fe-S protein and cytochrome b are strongly decreased in contrast to the two core proteins, cytochrome C1 and the 17 kDa subunit. We suggest that this is caused by defective assembly of the complex. The amount of cytochrome b present in the mutants is correlated to the presence of both the 11 and 14 kDa subunits, suggesting that these subunits together are necessary for a proper integration of cytochrome b into the membrane and/or protection of this protein from proteolytic breakdown.


Southern Blot Analysis Core Protein Yeast Mutant Total Cell Protein LEU2 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Katan, M.B., Pool, L., and Groot, G.S.P. (1976) Eur. J. Biochem. 65, 95–105CrossRefGoogle Scholar
  2. 2.
    Siedow, J.N., Power, S., De La Rosa, F.F., and Palmer, G. (1978) J.Biol. Chem. 253, 2392–2399Google Scholar
  3. 3.
    Kreike, J., Bechmann, H., Van Hemert, F.J., Schweyen, R.J., Baer, T.E. P.H., Kaudewitz, F., and Groot, G.S.P. (1979) Eur. J. Biochem. 101, 607–617CrossRefGoogle Scholar
  4. 4.
    Linke, P., and Weiss, H. (1986) Methods in Enzymol. 126, 201–210CrossRefGoogle Scholar
  5. 5.
    Gellerfors, P., Lunden, M., and Nelson, B.D. (1976) Eur. J. Biochem. 67, 463–468CrossRefGoogle Scholar
  6. 6.
    Wakabayashi, S., Takeda, H., Matsubara, H., Kim, C.H., and King (1982) J. Biochem. 91, 2077–2085Google Scholar
  7. 7.
    Kim, C.H., and King, T.E. (1983) J. Biol. Chem. 258, 13543–13551Google Scholar
  8. 8.
    Stonehuerner, I., O’Brien, P., Genen, L, Millet, F., Steidl, I., Yu, L., and Yu, C.A. (1985) J. Biol. Chem. 260, 5392–5398Google Scholar
  9. 9.
    Wakabayashi, S., Takao, T., Shimonishi, Y., Kunamitsu, S., Matsubara, H., Wang, T., Zhang, Z., and King, T.E. (1985) J. Biol. Chem. 260, 337–343Google Scholar
  10. 10.
    de Haan, M., Van Loon, A.P.G.M., Kreike, J., Vaessen, R.T.M.J., and Grivell, L.A. (1984) Eur. J. Biochem. 138, 169–177CrossRefGoogle Scholar
  11. 11.
    Yu, C.A., Nagaoka, S., Yu, L., and King, T.E. (1978) Biochem. Biophys. Res. Commun. 82, 1070–1078CrossRefGoogle Scholar
  12. 12.
    Yu, L., Yang, F.D., and Yu, C.A. (1985) J. Biol. Chem. 260, 963–973Google Scholar
  13. 13.
    Yu, L., Yang, F.D., Yu, C.A., Tsai, A.L., and Palmen, G. (1986) b.b.a. 848, 305–311Google Scholar
  14. 14.
    van Keulen, M.A., and Berden, J.A. (1985) Biochim, Biophys. Acta 808, 32–38CrossRefGoogle Scholar
  15. 15.
    van Loon, A.P.G.M., de Groot, R.J., van der Horst, G.T.J., and Grivell, L.A. (1982) Gene 20, 323–337CrossRefGoogle Scholar
  16. 16.
    van Loon, A.P.G.M., Maarse, A.C., Riezmenn, H., and Grivell, L.A. (1983) Gene 26 261–272CrossRefGoogle Scholar
  17. 17.
    van Loon, A.P.G.M., Vijn, R.J., de Groot, R.J., Polman, J.E.M., and Grivell, L.A. (1984) Mol. Gen. Genet. 197, 219–224CrossRefGoogle Scholar
  18. 18.
    Orr-Weaver, T.L., Szostak, J.W., and Rothstein, R.J. (1983)Methods in Enzymol.101, 228–245CrossRefGoogle Scholar
  19. 19.
    Maniatis, T., Fritsch, E.F., Sanbrook, J. (1982) Molecular Cloning: A loboratory Manual, Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  20. 20.
    Yanish-Parron, C., Vieira, J., and Messing, J. (1984)Gene 33, 103- 119CrossRefGoogle Scholar
  21. 21.
    Messing, J., Crea, R., and Seeburg, P.H. (1981) Nucl. Acids Res. 9, 309–321CrossRefGoogle Scholar
  22. 22.
    Dente, L., Cesareni, G., and Cortese, R. (1983) Nucl. Acids Res. 11, 1645–1655CrossRefGoogle Scholar
  23. 23.
    Southern, E.M. (1975) J. Mol. Biol. 98, 503–510CrossRefGoogle Scholar
  24. 24.
    Klebe, R.J., Harries, J.V., Sharp, D. and Douglas, M.D. (1983) Gene, 25, 333–341CrossRefGoogle Scholar
  25. 25.
    Finzi, E., Sperling, M., and Beattie, D.S. (1981) J. Biol. Chem. 256, 11917–11922Google Scholar
  26. 26.
    Lowrey, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) J. Biol. Chem. 193, 265–275Google Scholar
  27. 27.
    Laemmli, U.K. (1970) Nature (Lond.) 227, 680–685CrossRefGoogle Scholar
  28. 28.
    Vaessen, R.T.M.J., Kreike, J. and Groot, G.S.P. (1981) FEBS Lett. 124, 193–196CrossRefGoogle Scholar
  29. 29.
    Avrameas, S., and Ternynck, T. (1971) Immunochemistry 8, 1175CrossRefGoogle Scholar
  30. 30.
    van Gelder, B.F., and Muysers, A.O.M. (1966) Biochim. Biophys. Acta, 118, 47–57Google Scholar
  31. 31.
    van Gelder, B.F. (1978) Methods in Enzymol. 53, 125–128CrossRefGoogle Scholar
  32. 32.
    van Gelder, B.F., and Slater, E.C. (1962) Biochim. Biophys. Acta, 58, 593–595CrossRefGoogle Scholar
  33. 33.
    Berden, J.A., and Slater, E.C. (1970) Biochim. Biophys. Acta, 216, 237–249CrossRefGoogle Scholar
  34. 34.
    Andreadis, A., Hsu, Y-P., Hermodson, M., Kahlhaw, G., and Schimmel, P. (1984) J. Biol. Chem. 259 8059–8062Google Scholar
  35. 35.
    Sugihare, H., Watanabe, M., Kawamatsu, Y., and Morimoto, H. (1972) Liebigs Ann. Chem. 763, 109–120CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Peter J. Schoppink
    • 1
  • Leslie A. Grivell
    • 1
  • Jan A. Berden
    • 1
  1. 1.Laboratory of BiochemistryUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations