Advertisement

Effects of Long Chain Alkyl Compounds on Submitochondrial Particles: Mechanistic Differences between Nadh and Succinate Oxidases

  • C. P. Lee
  • N. Batayneh
  • S. J. Kopacz

Abstract

Long alkyl chain free fatty acids (FFA) have been known for more than 3 decades to affect various functions of isolated intact mitochondrial preparations. A number of mechanisms have been proposed, but none of them alone can accomodate all the experimental observations. It has been suggested that FFA at relatively low concentrations exert a primarily uncoupling effect, whereas at relatively higher concentrations they exert an inhibitory effect on the aerobic oxidation of both succinate and NAD-Iinked substrates (1). The uncoupling action of FFA has been attributed to the stimulation of the latent ATPase (2-6), and to its detergent-like (7) and ionophore-like action on the mitochondrial membrane (1,3,4). The inhibitory action at higher concentration has been interpreted to be the result of general damage to the mitochondrial membrane, and/or the formation of acyl CoA esters and their subsequent inhibition of the adenine nucleotide translocase in the mitochondrial inner membrane (1,3,8-13).

Keywords

Free Fatty Acid Respiratory Activity Myristic Acid Alkyl Amine NADH Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wojtczak, L. (1976) J. Bioenerg. and Biomemb. 8, 295–311Google Scholar
  2. 2.
    Pressman, B.C. and Lardy, H.A. (1956) Biochim. Biophys. Acta 21, 458–466CrossRefGoogle Scholar
  3. 3.
    Lerner, E., Shug, A.L., Elson, C. and Shrage, E. (1972) J. Biol. Chem. 247, 1513–1519Google Scholar
  4. 4.
    Flatmark, T. and Pedersen, J.I. (1975) Biochim. Biophys. Acta. 416, 53–103Google Scholar
  5. 5.
    Ahmed, K. and Scholefield, P.G. (1960) Nature 186, 1046–1047CrossRefGoogle Scholar
  6. 6.
    Avi-Dor, Y. (1960) Biochim. Biophys. Acta 39, 53–61CrossRefGoogle Scholar
  7. 7.
    Cereijo-Santalo, R. (1967) Canad. J. Biochem. 45, 897–909Google Scholar
  8. 8.
    Ho, C.H. and Pande, S.V. (1974) Biochim. Biophys. Acta 369, 86–94Google Scholar
  9. 9.
    Vaartjes, W.J., Kemp, A., Jr., Souverijn, J.H.M. and Van den Berg, S. G. (1972) FEBS Lett. 23, 303–308CrossRefGoogle Scholar
  10. 10.
    Shrago, E., Ball, M., Sul, H.S., Baquer, N.Z. and McLean, P. (1977) Eur. J. Biochem. 75, 83–89CrossRefGoogle Scholar
  11. 11.
    Christiansen, E.N., Drahota, Z., Duszynski, J. and Wojtczak, L. (1973) Eur. J. Biochem. 34, 506–512CrossRefGoogle Scholar
  12. 12.
    Morel, F., Lauquin, G., Lunardi, J., Duszynmski, J. and Vignais, P. V. (1974) FEBS Lett. 39, 133–138CrossRefGoogle Scholar
  13. 13.
    Shrago, E., Shug, A., Elson, C., Spennetta, T. and Croby, C. (1974) J. Biol. Chem. 249, 5269–5274Google Scholar
  14. 14.
    Wood, J.M., Wallick, E.T., Schwarts, A. and Chang, C.H. (1977) Biochim. Biophys. Acta 486, 331–340Google Scholar
  15. 15.
    Rydstrom, J., Panow, A.V., Paradies, G. and Ernster, L. (1971) Biochem. Biophys. Res. Comm. 45, 1389–1397CrossRefGoogle Scholar
  16. 16.
    Wood, J.M. (1978) Arch. Biochem. Biophys. 185, 352–361CrossRefGoogle Scholar
  17. 17.
    Halperin, J.L., Robinson, B.H. and Fritz, I.B. (1972) Proc. Natl. Acad. Sci. USA 69, 1003–1007CrossRefGoogle Scholar
  18. 18.
    Batayneh, N., Kopacz, S.J., and Lee, C.P. (1985). Biophys. J., 47 237aCrossRefGoogle Scholar
  19. 19.
    Batayneh, N., Kopacz, S.J., and Lee, C.P. (1986) Arch. Biochem. Biophys. 250, 476–487CrossRefGoogle Scholar
  20. 20.
    Lee, C.P. and Storey, B.T. (1981) in: Mitochondria and Microsomes (Lee, C.P., Schatz, G. and Dallner, G., eds.) pp. 121–153, Addison- Wesley Publ. Co.Google Scholar
  21. 21.
    Lee, C.P., Ernster, L. and Chance, B. (1969) Eur. J. Biochem. 8, 153–163CrossRefGoogle Scholar
  22. 22.
    Ernster, L. (1977) Ann. Rev. Biochem. 46, 981–995CrossRefGoogle Scholar
  23. 23.
    Sorgato, M.C. and Ferguson, S.J. (1979) Biochemistry 18, 5737–5742CrossRefGoogle Scholar
  24. 24.
    de Gomez-Puyou, M.T. (1978) Biochem. Biophys. Res. Comm. 82, 1028- 1033CrossRefGoogle Scholar
  25. 25.
    Higgins, E.S. and Rogers, K.S. (1976) Proc. Soc. Exp. Biol. Med. 152, 221–223Google Scholar
  26. 26.
    Mitchell, P. (1976) J. Theor. Biol. 62, 327–367CrossRefGoogle Scholar
  27. 27.
    Mitchell, P. (1975) FEBS Lett. 56, 1–6CrossRefGoogle Scholar
  28. 28.
    Boyer, P.D. (1975) FEBS Lett. 58, 1–6CrossRefGoogle Scholar
  29. 29.
    Chance, B. (1976) FEBS Lett. 23, 3–20CrossRefGoogle Scholar
  30. 30.
    Williams, R.J.P. (1978) FEBS Lett. 85, 9–10CrossRefGoogle Scholar
  31. 31.
    Nordenbrand, K. and Ernster, L. (1971) Eur. J. Biochem. 18, 258–273CrossRefGoogle Scholar
  32. 32.
    Bhuvaneswaran, C. and Wadkins, C.L. (1978) Biochem. Biophys. Res. Comm. 82, 648–654CrossRefGoogle Scholar
  33. 33.
    Kupriyanov, V.V. and Luzikov, V.N. (1974) FEBS Lett. 97, 133–137Google Scholar
  34. 34.
    Ferguson, S.J., Lloyd, W.T. and Radda, G.K. (1976) Biochim. Biophys. Acta 423, 174–188CrossRefGoogle Scholar
  35. 35.
    Ernster, L., Lee, C.P. and Norling, B. (1969) in: Fourth Bari Symposium, pp. 195–405, Adriatica Editrice, BariGoogle Scholar
  36. 36.
    Ragan, C.I. and Racker, E. (1973) J. Biol. Chem. 248, 2563–2569Google Scholar
  37. 37.
    Racker, E. and Kandrach, A. (1973) J. Biol. Chem. 248, 5841–5847Google Scholar
  38. 38.
    Trasch, H. and Bauerlein, E. (1979) FEBS Lett. 97. 133–137CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. P. Lee
    • 1
  • N. Batayneh
    • 1
  • S. J. Kopacz
    • 1
  1. 1.Department of Biochemistry, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations