Advertisement

Metabolism Studies by Radiorespirometry

  • Chih H. Wang

Abstract

Many of the recent advances in the area of carbohydrate catabolism can be credited to the use of radiotracer methods. Although some tritium-labeled compounds have been used for these studies, the majority of research efforts in this regard involved the use of C14 specifically labeled carbohydrates or allied compounds. The catabolic mechanism for the utilization of a given carbohydrate is commonly elucidated by one or both of two basic approaches [1]. The first is the conversion of specifically labeled carbohydrate into catabolic products in the absence or presence of inhibitors. Isotopic distribution patterns and relative specific activity [2, 3] of a key product or an intermediate often provide important information on the nature and participation of an individual pathway. The discovery of the Entner-Doudoroff (ED) pathway [4] (Fig. 1) is the result of experiments of this type. The second approach is the examination of the respiratory C14O2 samples derived from specifically labeled carbon atoms of a given carbohydrate with respect to either the specific activities or yields. Experiments of this type are easy to carry out and provide information on the occurrence and participation of a known pathway in a given biological system.

Keywords

Pulse Spectrum Liquid Scintillation Spectrometer Hexose Monophosphate Concurrent Operation Relative Specific Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Saccharides, Alternate Routes of Metabolism. Chapter in Florkin and Mason ed. “Comparative Biochemistry,” Academic Press, New York (1962).Google Scholar
  2. (2).
    Blumenthal, H. J., Lewis, K. S., and Weinhouse, S. J. Am, Chem, Soc. 76, 6093 (1954).CrossRefGoogle Scholar
  3. (3).
    Dawes, E. A. and Holmes, W. H. Biochim. Biophys. Acta 29, 82 (1958).CrossRefGoogle Scholar
  4. (4).
    Entner, N. and Doudoroff, M. J. Biol. Chem. 196, 853 (1952).Google Scholar
  5. (5).
    Wood, H. G. Phys. Rev. 35, 84 (1955).Google Scholar
  6. (6).
    Katz, J. and Wood, H. G. J. Biol. Chem. 235, 2165 (1960).Google Scholar
  7. (7).
    Wood, H.G. and Katz, J. J. Biol. Chem. 233, 1279 (1958).Google Scholar
  8. (8).
    Wang, C. H., Gregg, C. T., Forbusch, I. A., Christensen, B. E., and Cheldelin, V.H. J. Am. Chem. Soc. 78, 1869 (1956).CrossRefGoogle Scholar
  9. (9).
    Wang, C. H., Stern, I. J., Gilmour, C. M., Klungsoyr, S., Reed, D. J., Bialy, J. J., Christensen, B.E., and Cheldelin, V.H. J. Bact. 76, 207 (1958).Google Scholar
  10. (10).
    Isono, M., Krackov, J. K., and Wang, C. H. Unpublished work.Google Scholar
  11. (11).
    Wang, C. H. and Ramsey, J.C. Unpublished work.Google Scholar
  12. (12).
    Wang, C. H. and Krackov, J. K. J. Biol. Chem. (1962) (in press).Google Scholar
  13. (13).
    Reed, D. J. and Wang, C. H. Can. J. Microbiol. (1962).Google Scholar
  14. (14).
    Wang, C. H., Bialy, J. J., Klungsoyr, S., and Gilmour, G.M. J. Bact. 75, 31 (1958).Google Scholar
  15. (15).
    Brandt, W.H. and Wang, C.H. Am. J. Bot. 47, 50 (1960).CrossRefGoogle Scholar
  16. (16).
    Ray, H. D., Duryee, F. L., Deeney, A.M., Wang, C. H., Anderson, A. W., and Elliker, P.R. Can. J. Microbiol. 63, 289 (1960).Google Scholar
  17. (17).
    Wang, C.H., Stern, I. J., and Gilmour, C.M. Arch. Biochem. Biophys. 81, 489 (1959).CrossRefGoogle Scholar
  18. (18).
    Stern, I. J. Wang, C. H., and Gilmour, C. M. J. Bact. 79, 601 (1960).Google Scholar
  19. (19).
    Kitos, P. A., Wang, C. H., Mohler, B. A., King, T. E., and Cheldelin, V. H. J. Biol. Chem. 233, 1295 (1958).Google Scholar
  20. (20).
    Wang, C. H. and Bjerre, S. H. Fed. Proc. 20, 84a (1961).Google Scholar
  21. (21).
    Zagallo, A. C. and Wang, C. H. J. Gen. Microbiol. (1962) (in press).Google Scholar
  22. (22).
    Silva, G. M., Doyle, W. P., and Wang, C. H. Nature, 182, 102 (1958).CrossRefGoogle Scholar
  23. (23).
    Doyle, W. P. and Wang, C. H. Can J. Bot. 36, 483 (1958).CrossRefGoogle Scholar
  24. (24).
    Barbour, R. D., Buhler, D. R., and Wang, C. H. Plant Physiol. 33, 396 (1958).CrossRefGoogle Scholar
  25. (25).
    Doyle, W. P. and Wang, C. H. Plant Physiol. 35, 751 (1960).CrossRefGoogle Scholar
  26. (26).
    Barbour, R.D. and Wang, C. H. J. Am. Soc. Sugar Beet Tech. 11, 436 (1961).CrossRefGoogle Scholar
  27. (27).
    Wang, C. H. and Barbour, R. D. J. Am. Soc. Sugar Beet Tech. 11, 443 (1961).CrossRefGoogle Scholar
  28. (28).
    Wang, C. H., Snipper, L.P., Bilen, 0., and Hawthorne, B. Proc. Soc. Exptl. Biol. (1962) (in press).Google Scholar
  29. (29).
    Eisenberg, F., Jr., Dayton, P.G., and Burns, J. J. J. Biol. Chem. 234, 250 (1959).Google Scholar
  30. (30).
    Silva, G. M. and Wang, C. H. Arquivos Portuguese de Bioquimica III, 298 (1959).Google Scholar
  31. (31).
    Okita, G. T., Spratt, J., and LeRoy, G. V. Nucleonics 14, 76 (1956).Google Scholar
  32. (32).
    Helf, S., White, C. G., and Schelley, R.N. Anal. Chem. 32, 238 (1960).CrossRefGoogle Scholar
  33. (33).
    Peng, C. T. “Liquid Scintillation Counting,” p. 198, Pergamon Press, NewYork (1958).Google Scholar
  34. (34).
    Peng, C.T. Anal. Chem. 32, 1292 (1960).CrossRefGoogle Scholar
  35. (35).
    Helf, S., White, C. G., and Schelley, R.N. Anal. Chem. 32, 238 (1960).CrossRefGoogle Scholar
  36. (36).
    Shapira, J. and Perkins, W.H. Science 131, 414 (1960).CrossRefGoogle Scholar
  37. (37).
    Wang, C. H. and Jones, D. E. Biochem. Biophys. Res. Comm. 1, 203 (1959).Google Scholar

Copyright information

© New England Nuclear Corporation 1963

Authors and Affiliations

  • Chih H. Wang
    • 1
  1. 1.Oregon State UniversityEugeneUSA

Personalised recommendations