Basic Rheology of Mammalian Blood: Factors Promoting and Factors Interfering with Fluidity of Blood

  • Th. Wetter
  • H. Schmid-Schönbein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 164)


Blood flow in the microvasculature is determined by rheological phenomena related to the behaviour of single red blood cells. This behaviour can be characterized in terms of deformability, aggregation tendency, tank tread motion, and haematocrit adaptation to the flow situation. The last mechanism induces a separation of the paths, that plasma and blood cells take through a micronetwork.


Shear Rate Latex Particle High Shear Force Blood Fluidity Aggregation Tendency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, K.H., Gaehtgens, P., Pries, A. and Heuser, M., 1979, The Fahraeus effect in narrow capillaries. Microvasc. Res. 18:33.PubMedCrossRefGoogle Scholar
  2. Burton, K.S., 1973, Cat sartorius muscle: An isolated perfused skeletal muscle preparation for microvascular research. Microvasc. Res. 5:401–409.PubMedCrossRefGoogle Scholar
  3. Chambers, R. and Zweifach, B.W., 1944, Topography and function of the mesenteric circulation. Am. J. Anat. 75:173–205.CrossRefGoogle Scholar
  4. Driessen, G.K., Haest, C.W.M., Heidtmann, H., Kamp, D. and Schmid-Schönbein, H., 1980, Effect of reduced red cell “deformability” on flow velocity in capillaries of rat mesentery. Pflüger’s Arch. 388:75–78.CrossRefGoogle Scholar
  5. Fahraeus, R., 1929, The suspension stability of blood. Physiol. Rev. 9:241.Google Scholar
  6. Fischer, T.M., Haest, C.W.M., Stöhr, M., Kamp, D. and Deuticke, B; 1978, Selective alteration of erythrocyte deformability by SH-reagents. Evidence for an involvement of spectrin in membrane shear elasticity. In: Biochimica et Biophysica Acta, 510:270–282 (1).Google Scholar
  7. Fischer, T.M., Stöhr-Liesen, M., Schmid-Schönbein, H., 1978, Red cells as a fluid droplet; tank tread like motion of human erythrocyte membrane in shear flow. Science 202:894–896(2).PubMedCrossRefGoogle Scholar
  8. Gaehtgens, P., 1981, In press (Biorheology).Google Scholar
  9. Gaehtgens, P., Schmidt, F. and Will, G., 1979, Microrheology of nucleated erythrocytes (NRBC) during flow through narrow capillaries. Microvasc. Res. 17:23, 7.Google Scholar
  10. Jay, A.W.L. and Canham, P.B., 1977, Viscoelastic properties of the human red blood cell membrane. II. Area and volume of individual red cells entering a micropipette. Biophys. J. 17:169.PubMedCrossRefGoogle Scholar
  11. Klitzman, B. and Duling, B.R., 1979, Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am. J. Physiol. 237: H 481–H 490.Google Scholar
  12. Knisely, M.H., 1965, Intravascular erythrocyte aggregation (blood sludge). In: Handbook of physiol., W.F. Hamilton and P. Dow (eds.), Sect. 2, Vol. III, Washington D.C.Google Scholar
  13. Schmid-Schönbein, H. and Volger, E., 1977, Abnormes Fliessverhalten des Blutes beim Diabetes mellitus: Über die Rolle gestörter Fliesseigenschaften und veränderter Fliessbedingungen bei der Pathogenese der diabetischen Retinopathie. In: Diabetische Angiopathien, Hrsg.: K. Alexander — M. Cachovan, Verlag Gerhard Witzstock, Baden-Baden-Brüssel-Köln-New York, S. 38–48.Google Scholar
  14. Schmid-Schönbein, H., Klitzman, B., and Johnson, P.J., 1981, Vasomotion and blood hemorheology fluidity: maintenance of blood fluidity in the microvessel by rhythmic vasomotion. In press (Bibl. Anat.).Google Scholar
  15. Schmid-Schonbein, H., Gosen, J., Heinrich, L., Klose, H.J. and Volger, E., 1973, A counter rotating “rheoscope-chamber” for the study of the microrheology of blood cell aggregation by microscopic observation and microphotometry. Microvasc. Res. 6:366–376.PubMedCrossRefGoogle Scholar
  16. Strock, P.E. and Majno, G., 1969, Microvascular changes in acutely ischemic rat muscle. Surgery Gyn. Obstetrics 129: 1213–1224.Google Scholar
  17. Webb, R.L. and Nicoli, P.A., 1954, The bat wing as a subject for studies in homeostasis of capillary beds. Anat. Rec. 120: 253.PubMedCrossRefGoogle Scholar
  18. Wetter, Th., Schmid-Schönbein, H., Johnson, P.C. and Klitzman, B., Simultaneous variation in flow velocity and hematocrit in skeletal muscle. Wetter el al. in press (Bibl. Anat.).Google Scholar
  19. Wilkinson, W.L., 1960, Non-Newtonian fluids: fluid mechanism, mixing and heat transfer. New York-London-Oxford-Paris: Pergamon Press.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Th. Wetter
    • 1
  • H. Schmid-Schönbein
    • 1
  1. 1.Department of Physiology of RWTH-AachenAachenGermany

Personalised recommendations