Molecular Mechanism of Fibrinolysis

  • H. R. Lijnen
  • D. Collen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 164)


Mammalian blood contains an enzymatic system capable of dissolving blood clots, which is called the fibrinolytic system. A review of the identification of the different components (Table I) has been given by Astrup (1) and by Fearnley (2). The system comprises a proenzyme plasminogen which can be activated to the active enzyme plasmin by several different types of plasminogen activators. Inhibition may occur at the level of the activators or at the level of plasmin.


Plasminogen Activator Tranexamic Acid Fibrinolytic System Plasminogen Activation Human Plasminogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Astrup, Fibrinolysis in the organism. Blood 11:781–806 (1956).PubMedGoogle Scholar
  2. 2.
    G.R. Feamley, Fibrinolysis. Adv. Drug Res. 7:107–163 (1973).Google Scholar
  3. 3.
    P. Wallén, and B. Wiman, Characterization of human plasminogen. I. On the relationship between different molecular forms of plasminogen demonstrated in plasma and found in purified preparations. Biochim. Biophys. Acta 221:20–30 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    P. Wallén, and B. Wiman, Characterization of human plasminogen. II. Separation and partial characterization of different molecular forms of human plasminogen. Biochim. Boiphys. Acta 257:122–134 (1972).CrossRefGoogle Scholar
  5. 5.
    B. Wiman, Biochemistry of the plasminogen to plasmin conversion. In: “Fibrinolysis. Current fundamental and clinical aspects” (Gaffney, P.J. and Balkuv-Ulutin, S., eds.). Academic Press, London, p. 47–60 (1978).Google Scholar
  6. 6.
    D. Collen, and L. De Maeyer, Molecular biology of human plasminogen. I. Physiochemical properties and microheterogeneity. Thrombos. Diathes. Haemorrh. 34:396–402 (1975).Google Scholar
  7. 7.
    F.J. Castellino, G.E. Siefring Jr., J.M. Sodetz, and R.K. Bretthauer, Amino terminal amino acid sequences and carbohydrate of the two major forms of rabbit plasminogen. Biochem. Biophys. Res. Commun. 53:845–851 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Summaria, L. Arzadon, P. Bernabe, and K.C. Robbins, Studies on the isolation of the multiple molecular forms of human plasminogen and plasmin by isoelectric focusing methods. J. Biol. Chem. 247:4691–4702 (1972).PubMedGoogle Scholar
  9. 9.
    W.J. Brockway,and F.J. Castellino, Measurement of the binding of antifibrinolytic amino acids to various plasminogens. Arch. Biochem. Biophys. 151:194–199 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    K.C. Robbins, L. Summaria, B. Hsieh, and R.J. Shah, The peptide chains of human plasmin. Mechanism of activation of human plasminogen to plasmin. J. Biol. Chem. 242:2333–2342 (1967).PubMedGoogle Scholar
  11. 11.
    W. R. Groskopf, L. Summaria, and K.C. Robbins, Studies on the active center of human plasmin. Partial amino acid sequence of a peptide containing the active center serine residue. J. Biol. Chem. 244:3590–3597 (1969).PubMedGoogle Scholar
  12. 12.
    L. Sottrup-Jensen, T.E. Petersen, and S. Magnusson, In: “Atlas of protein sequence and structure”, Vol. 5, suppl. 3, p. 91 (1978).Google Scholar
  13. 13.
    P. Wallen, and B. Wiman, On the generation of intermediate plasminogen and its significance for activation. In: “Proteases and biological control” (Reich, E., Rifkin, D.B., and Shaw, E., eds.). Cold spring Harbor Laboratory, p. 291–303 (1975).Google Scholar
  14. 14.
    B. Wiman, and D. Collen, On the mechanism of the reaction between human α2-antiplasmin and plasmin. J. Biol. Chem. 254: 9291–9297 (1979).PubMedGoogle Scholar
  15. 15.
    G. Markus, J.L. De Pasquale, and F.C. Wissler, Quantitative determination of the binding of epsilon-aminocaproic acid to native plasminogen. J. Biol. Chem. 253:727–732 (1978).PubMedGoogle Scholar
  16. 16.
    L. Sottrup-Jensen, H. Claeys, M. Zajdel, T.E. Petersen, and S. Magnusson, The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “mini”-plasminogen (M.W. 38,000) by elastase-catalyzed specific limited proteolysis. In: “Progress in chemical fibrinolysis and thrombolysis, vol. 3” (Davidson, J.F., Rowan, R.M., Samama, M.M., and Desnoyers, P.C., eds.). Raven Press, New York, p. 191–209 (1978).Google Scholar
  17. 17.
    E.E. Rickli, and W.I. Otavsky, A new method of isolation and some properties of heavy chain of human plasmin. Eur. J. Biochem. 9:441–447 (1975).CrossRefGoogle Scholar
  18. 18.
    B. Wiman, and P. Wallen, The specific interaction between palsminogen and fibrin. A physiological role of the lysine binding site in plasminogen. Thrombos. Res. 10:213–222 (1977).CrossRefGoogle Scholar
  19. 19.
    D. Collen, On the regulation and control of fibrinolysis. Thrombos. Haemostas. 43:77–89 (1980).Google Scholar
  20. 20.
    P. Wallen, M. Ranby, N. Bergsdorf, and P. Kok, Two forms of the tissue plasminogen activator and their enzymatic properties. Prog. Chem. Fibrinolysis Thrombolysis, vol. 5 (in press) (1981).Google Scholar
  21. 21.
    D.C. Rijken, G. Wijngaards, M. Zaal-de Jong, and J. Welbergen, Purification and partial characterization of plasminogen activator from human uterine tissue. Biochim. Biophys. Acta 580:140–153 (1979).Google Scholar
  22. 22.
    E.R. Cole, and F.W. Bachmann, Purification and properties of a plasminogen activator from pig heart. J. Biol. Chem. 252: 3729–3737 (1977).PubMedGoogle Scholar
  23. 23.
    P. Wallén, P. Kok, and M. Ranby, The tissue activator of plasminogen. In: “Regulatory enzymes and their control” (Magnusson, S., Ottesen, M., Foltman, B., Dano, K., and Neurath, H., eds.). Pergamon Press, Oxford, p. 127–135 (1978).Google Scholar
  24. 24.
    E.E. Rickli, and G. Zaugg, Isolation and purification of highly enriched tissue plasminogen activator from pig heart. Thrombos. Diathes. Haemorrh. 23:64–76 (1970).Google Scholar
  25. 25.
    D.C. Rijken, and D. Collen, Purification and characterization of the plasminogen activator from a human melanoma cell culture. Prog. Chem. Fibrinolysis Thrombolysis, 5 (in press) (1981).Google Scholar
  26. 26.
    J.D. Cash, Control mechanism of activator release. In: “Progress in chemical fibrinolysis and thrombolysis, vol. 3” (Davidson, J.F., Rowan, R.M., Samama, M.M., and Desnoyers, P.C., eds.). Raven Press, New York, p. 65–75 (1978).Google Scholar
  27. 27.
    P. Wallen, Activation of plasminogen with urokinase and tissue activator. In: “Thrombosis and urokinase” (Paoletti, R., and Sherry, S., eds.). Academic Press, London, p. 91–102 (1977).Google Scholar
  28. 28.
    S.M. Camiolo, S. Throrsen, and T. Astrup, Fibrinogenolysis and fibrinolysis with tissue plasminogen activator, urokinase, streptokinase-activated human globulin, and plasmin. Proc. Soc. Exper. Biol. Med. 138:277–280 (1971).Google Scholar
  29. 29.
    G. Tytgat, D. Collen, and R.A. De Vreker, Investigations on the fibrinolytic system in liver cirrhosis. Acta Haematol. 40:265–274 (1968).PubMedCrossRefGoogle Scholar
  30. 30.
    C. Kluft, Quantitation and behaviour of extrinsic or vascular plasminogen activator in blood. Prog. Chem. Fibrinolysis Thrombolysis, 5 (in press) (1981).Google Scholar
  31. 31.
    V. Gurewich, E. Hyde, and B. Lipinski, The resistance of fibrinogen and soluble fibrin monomer in blood to degradation by a potent plasminogen activator from cadaver limbs. Blood 46:555–565 (1975).PubMedGoogle Scholar
  32. 32.
    D. Collen, α2-Antiplasmin inhibitor deficiency. Lancet I:1039–1040 (1979).CrossRefGoogle Scholar
  33. 33.
    M. Moroi, N. Aoki, Isolation and characterization of alpha 2-plasmin inhibitor from human plasma. A novel proteinase inhibitor which inhibits activator-induced clot lysis. J. Biol. Chem. 251:5956–5965 (1976).PubMedGoogle Scholar
  34. 34.
    B. Wiman, and D. Collen, Purification and characterization of human antiplasmin, the fast-acting plasmin inhibitor in plasma. Eur. J. Biochem. 78:19–26 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Müllertz, and I. Clemmensen, The primary inhibitor of plasmin in human plasma. Biochem. J. 159:545–553 (1976).PubMedGoogle Scholar
  36. 36.
    U. Christensen, and I. Clemmensen, Kinetic properties of the primary inhibitor of plasmin from human plasma. Biochem. J. 163:389–391 (1977).PubMedGoogle Scholar
  37. 37.
    B. Wiman, and D. Collen, On the kinetics of the reaction between human antiplasmin and plasmin. Eur. J. Biochem. 84: 573–578 (1978).PubMedCrossRefGoogle Scholar
  38. 38.
    B. Wiman, L. Boman, and D. Collen, On the kinetics of the reaction between human antiplasmin and a low-molecularweight form of plasmin. Eur. J. Biochem. 87:143–146 (1978).PubMedCrossRefGoogle Scholar
  39. 39.
    K. Koie, K. Ogata, T. Kamiya, J. Takamatsu, and M. Kohakura, α2-Plasmin inhibitor deficiency (Miyasata disease). Lancet ii:1334–1336 (1978).CrossRefGoogle Scholar
  40. 40.
    C. Kluft, E. Vellenga, and E.J.P. Brommer, Homozygous α2-antiplasmin deficiency. Lancet ii:206 (1979).CrossRefGoogle Scholar
  41. 41.
    D. Collen, Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur. J. Biochem. 69:209–216 (1976).PubMedCrossRefGoogle Scholar
  42. 42.
    P.C. Harpel, Human alpha 2-macroglobulin. Methods Enzymol. 45:639–652 (1976).PubMedCrossRefGoogle Scholar
  43. 43.
    D. Collen, G.N. Tytgat, H. Claeys, and R. Piessens, Metabolism and distribution of fibrinogen. I. Fibrinogen turnover in physiological conditions in humans. Brit. J. Haematol. 22: 681–700 (1972).CrossRefGoogle Scholar
  44. 44.
    S. Thorsen, Differences in the binding to fibrin of a native plasminogen and plasminogen modified by proteolytic degradation. Influence of omega-amino-carboxylic acids. Biochim. Biophys. Acta 393:55–65 (1975).PubMedCrossRefGoogle Scholar
  45. 45.
    I. Rákóczi, B. Wiman, and D. Collen, On the biological significance of the specific interaction between fibrin, plasminogen and antiplasmin. Biochim. Biophys. Acta 540:295–300 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    B. Wiman, and D. Collen, Molecular mechanism of physiological fibrinolysis. Nature 272:549–550 (1978).PubMedCrossRefGoogle Scholar
  47. 47.
    S. Müllertz, Different molecular forms of plasminogen and plasmin produced by urokinase in human plasma and their relation to protease inhibitors and lysis of fibrinogen and fibrin. Biochem. J. 143:273–283 (1974).PubMedGoogle Scholar
  48. 48.
    D. Collen, and M. Verstraete, α2-Antiplasmin consumption and fibrinogen breakdown during thrombolytic therapy. Thrombos. Res. 14:631–639 (1979).CrossRefGoogle Scholar
  49. 49.
    B. Wiman, H.R. Lijnen, and D. Collen, On the specific interaction between the lysine-binding sites in plasmin and complementary sites in α2-antiplasmin and in fibrinogen. Biochim. Biophys. Acta 579:142–154 (1979).PubMedCrossRefGoogle Scholar
  50. 50.
    Y. Sakata, and N. Aoki, Cross-linking of α2-plasmin inhibitor to fibrin by fibrin-stabilizing factor. J. Clin. Invest. 65:290–297 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    H. Haupt, and N. Heimburger, Humanserumproteine mit hoher Affinität zu Carboxymethylcellulose. I. Isolierung von Lysozym, C1q und zwei busher unbekannten α-Globulinen. Hoppe-Seyler’s Z. Physiol. Chem. 353:1125–1132 (1972).PubMedCrossRefGoogle Scholar
  52. 52.
    N. Heimburger, H. Haupt, T. Kranz, and S. Baudner, Humanserumproteine mit hoher Affinität zu Carboxymethylcellulose. II. Physikalischchemische und immunologische Charakterisierung eines histidinereichen 3,8 S-α2-Glycoproteins (CM-Protein I). Hoppe-Seyler’s Z. Physiol Chem. 353:1133–1140 (1972).PubMedCrossRefGoogle Scholar
  53. 53.
    H.R. Lijnen, M. Hoylaerts, and D. Collen, Isolation and characterization of a human plasma protein with affinity for the lysine-binding sites in plasminogen. Role in the regulation of fibrinolysis and identification as histidine-rich glycoprotein. J. Biol. Chem. 255:10214–10222 (1980).PubMedGoogle Scholar
  54. 54.
    S. Thorsen, and S. Müllertz, Rate of activation and electrophoretic mobility of unmodified and partially degraded plasminogen. Effects of 6-aminohexanoic acid and related compounds. Scand. J. Clin. Lab. Invest. 34:167 (1974).PubMedCrossRefGoogle Scholar
  55. 55.
    G.P. McNicol, A.P. Fletcher, N. Alkjaersig, and S. Sherry, Impairment of hemostasis in the urinary tract: the role of urokinase. J. Lab. Clin. Med. 58:34–46 (1961).PubMedGoogle Scholar
  56. 56.
    L. Nilsson, and G. Rybo, Treatment of menorrhagia with an antifibrinolytic agent, tranexamic acid (AMCA). A double-blind investigation. Acta Obstet. Gynec. Scand. 46:572–580 (1967).CrossRefGoogle Scholar
  57. 57.
    D. Collen, N. Semeraro, J.P. Tricot, and J. Vermylen, Turnover of fibrinogen, plasminogen and prothrombin during exercise in man. J. Appl. Physiol. 42:865–873 (1977).PubMedGoogle Scholar
  58. 58.
    D. Collen, and J. Vermylen, Metabolism of iodine-labeled plasminogen during streptokinase and reptilase therapy in man. Thrombos. Res. 2:238–250 (1973).CrossRefGoogle Scholar
  59. 59.
    D. Collen, and M. Verstraete, Plasmin-antiplasmin complex formation during defibrase infusion in man. Thrombos. Res. 11:417–420 (1977).CrossRefGoogle Scholar
  60. 60.
    D. Collen, G. Tytgat, H. Claeys, M. Verstraete, and P. Wallen, Metabolism of plasminogen in healthy subjects: effect of tranexamic acid. J. Clin. Invest. 51:1310–1318 (1972).PubMedCrossRefGoogle Scholar
  61. 61.
    D. Collen, J. Rouvier, D.F. Chamone, and M. Verstraete, Turnover of radiolabeled plasminogen and prothrombin in cirrhosis of the liver. Eur. J. Clin. Invest. 8:185–188 (1978).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • H. R. Lijnen
    • 1
  • D. Collen
    • 1
  1. 1.Center for Thrombosis and Vascular Research, Department of Medical ResearchUniversity of LeuvenBelgium

Personalised recommendations