Phytobenthic Ecology and Regulated Streams

  • Rex L. Lowe


Phytobenthos, the photosynthetic component of benthic ecosystems, plays a fundamental role in lotic food webs. Although the importance of allochthonous energy sources has been established for smaller streams of the first through third orders (Scott, 1958; Hynes, 1963; Cummins, 1975), phytobenthos is of major importance in medium-sized rivers (Blum, 1956, 1957; Cummins, 1975; Pryfogle and Lowe, in press; Reid, 1961; Gale et al., in press). The most important algal members of the phytobenthos are usually from one of three divisions, Bacillariophyta (diatoms), Chlorophyta (green algae), and Cyanophyta (blue-green algae). Mosses and liverworts (Bryophyta) reach maximum importance in small, swift streams having stony substrates (Haslam, 1978). Aquatic vascular plants, often referred to as aquatic macrophytes, will be referred to as higher plants in this paper. They belong to several plant families and their occurrence is usually regulated by such chemical and physical parameters as flow, turbulence, light, substrate, and dissolved chemicals (Haslam, 1978).


Standing Crop Aquatic Macrophyte Regulate Stream Periphyton Community Aquatic Vascular Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baxter, R. M., 1977, Environmental effects of dams and impoundments, Annu. Rev. Ecol. Syst., 8:255–283.CrossRefGoogle Scholar
  2. Blum, J. L., 1956, The ecology of river algae, Bot. Rev., 22:291–341.CrossRefGoogle Scholar
  3. Blum, J. L., 1957, An ecological study of the algae of the Saline River, Michigan, Bydrobiologia, 9:361–408.CrossRefGoogle Scholar
  4. Blum, J. L., 1960, Algal populations in flowing waters, Spec. Publ. Pymatuning Lab. Field Biol., 2:11–21.Google Scholar
  5. Butcher, R. W., 1940, Studies on the ecology of rivers, IV. Observations on the growth and distribution of sessil algae in the River Hull, Yorkshire, J. Eool., 28:210–223.Google Scholar
  6. Butcher, R. W., 1946, Studies on the ecology of rivers, VI. The algal growth in certain highly calcareous streams, J. Ecol., 33:268–283.CrossRefGoogle Scholar
  7. Cummins, K. W., 1975, The ecology of running waters; theory and practice, p. 278–293, in: “Proceedings Sandusky River Basin Symposium,”, Jackson, Prater, eds., Int. Joint Commission.Google Scholar
  8. Gale, W. F., Gurzynski, A. J., and Lowe, R. L., in press, Colonization and standing crops of epilithic algae in the Susquehanna River (Pennsylvania), J. Phycol. Google Scholar
  9. Hannan, H., and Young, W. J., 1974, The influence of a deep-storage reservoir on the physiochemical limnology of a central Texas river, Hydrobiologia, 44:177–207.CrossRefGoogle Scholar
  10. Haslam, S. M., 1978, “River Plants,” Cambridge Univ. Press, London, England.Google Scholar
  11. Hilsenhoff, W. L., 1971, Changes in the downstream insect and amphipod fauna caused by an impoundment with a hypolimnion drain, Ann. Entomol. Soc. Am., 64:743–746.Google Scholar
  12. Holmes, N. T. H., and Whitton, B. A., 1977, The macrophytic vegetation of the River Tees in 1975: Observed and predicted changes, Freshwater Biol., 7:43–60.CrossRefGoogle Scholar
  13. Hynes, H. B. N., 1963, Imported organic matter and secondary productivity in streams, Int. Congr. Zool., 16(4):324–329.Google Scholar
  14. Hynes, H. B. N., 1970, “The Ecology of Running Waters,” Univ. Toronto Press, Toronto, Canada, 555 p.Google Scholar
  15. Jones, J. R. E., 1951, An ecological study of the River Towy, J. Anim. Ecol., 20:68–86.CrossRefGoogle Scholar
  16. Kroger, R. L., 1973, Biological effects of fluctuating water levels in the Snake River, Grand Teton National Park, Wyoming, Am. Midi. Nat., 89:478–481.CrossRefGoogle Scholar
  17. Lawson, L. L., and Rushforth, S. R., 1975, The diatom flora of the Provo River, Utah, U.S.A., Bibl. Phycol., 17:149 p.Google Scholar
  18. Lowe, R. L., 1974, “Environmental Requirements and Pollution Tolerance of Freshwater Diatoms,” EPA-670/4–74–005, Off. Res. Dev., U.S. Environmental Protection Agency, Cincinnati, 333 p.Google Scholar
  19. Maciolek, J. A., and Tunzi, M. G., 1968, Microseston dynamics in a simple Sierra Nevada lake-stream system, Ecology, 49:60–75.CrossRefGoogle Scholar
  20. Mclntire, C. D., 1966, Some effects of current velocity on periphyton communities in laboratory streams, Eydrohiologia, 27:559–570.Google Scholar
  21. Neel, J. K., 1963, Impact of reservoirs, p. 575–593, in: “Limnology in North America,” D. G. Frey, ed., Univ. Wisconsin Press, Madison.Google Scholar
  22. Nisbet, M., 1961, Un example de pollution de riviére par vidage d’une retenue hydroélectrique, Verh. Int. Verein. Theor. Angew. Limnol., 14:678–680.Google Scholar
  23. Patrick, R., and Reimer, C. W., 1966, “The Diatoms of the United States, Volume 1,” Acad. Nat. Sci., Philadelphia, Monograph 13, 688 p.Google Scholar
  24. Peňáz, M., Kubicek, F., Marvan, F., and Zelinka, M., 1968, Influence of the Vir River Valley reservoir on the hydrobiological and ichthyological conditions in the River Svratka, Acta Sci. Nat. Brno, 2(l):l–60.Google Scholar
  25. Phinney, H. K., and Mclntire, C. D., 1965, Effects of temperature on metabolism of periphyton communities developed in laboratory streams, Limnol. Oceanogr., 10(3):341–344.CrossRefGoogle Scholar
  26. Powell, G. C., 1958, “Evaluation of the Effects of a Power Dam Water Release Pattern Upon the Downstream Fishery,” M.S. Thesis, Colorado State Univ., Fort Collins, 149 p.Google Scholar
  27. Pryfogle, P. A., and Lowe, R. L., in press, Sampling and interpretation of epilithic lotic diatom communities, in: “Methods and Measurements of Attached Microcommunities: A Review,” Am. Soc. Testing and Materials, Philadelphia, Pennsylvania.Google Scholar
  28. Reid, G. K., 1961, “Ecology of Inland Waters and Estuaries,” Reinhold Publ. Corp., New York, 375 p.Google Scholar
  29. Scott, D. C., 1958, Biological balance in streams, Sewage Ind. Wastes, 1958, 1169–1173.Google Scholar
  30. Sculthorpe, C. D., 1967, “The Biology of Aquatic Vascular Plants,” St. Martins Press, New York, 610 p.Google Scholar
  31. Spence, J. A., and Hynes, H. B. N., 1971, Differences in benthos upstream and downstream of an impoundment, J. Fish. Res. Board Can., 28:35–43.CrossRefGoogle Scholar
  32. Stober, Q. J., 1964, Some limnological effects of Tiber Reservoir on the Marias River, Montana, Proc. Mont. Acad. Sci., 23:111–137.Google Scholar
  33. Ward, J. V., 1974, A temperature-stressed stream ecosystem below a hypolimnial release mountain reservoir, Aroh. Hydrobiol., 74:247–275.Google Scholar
  34. Ward, J. V., 1976a, Effects of thermal constancy and seasonal temperature displacement on community structure of stream macroinverte-brates, p. 302–307, in: “Thermal Ecology II,” G. W. Esch and R. W. McFarlane, eds., ERDA Symp. Ser. (CONF-750425).Google Scholar
  35. Ward, J. V., 1976b, Comparative limnology of differentially regulated sections of a Colorado mountain river, Aroh. Hydrobiol., 78(3):319–342.Google Scholar
  36. Zimmerman, P., 1961a, Experimentelle Untersuchungen liber die ökologische Wirkung der Strömgeschwindigkeit auf die Lebensgemeinschaften des fliessenden Wassers, Schweiz. Z. Hydrol., 23:1–81 and 63:200.Google Scholar
  37. Zimmerman, P., 1961b, Experimentelle Untersuchungen über den Einfluss der Strömungsgeschwindigkeit auf die Fliesswasserbiozönose, Verh. Int. Verein. Theor. Angew. Limnol., 14:396–399 and 63:200.Google Scholar
  38. Zimmerman, P., 1962, Der Einfluss der Strömung auf die Zusammensetzung der Lebensgemeinschaften im experiment, Schweiz. Z. Hydrol., 24:408–411, 63.Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Rex L. Lowe
    • 1
  1. 1.Department of Biological SciencesBowling Green State UniversityBowling GreenUSA

Personalised recommendations