The Contact Angle and Interface Energetics

  • Joseph D. Andrade
  • Lee M. Smith
  • Donald E. Gregonis


Information on the outermost few angstroms of solid surfaces is very difficult to obtain. One of the most sensitive methods known for obtaining true surface information is solid/liquid/vapor (S/L/V) or solid/liquid/liquid (S/L/L) contact angles. These methods are unique in that the equipment required is relatively simple and inexpensive. Although interpretation of the results obtained is dependent on a number of assumptions, each of which is somewhat controversial, a first-order interpretation is possible and has proven to be very useful in practically all areas of surface science and engineering. Most of the surface science texts briefly referred to in Chapter 1 contain one or more chapters on surface tension, capillarity, or contact angle methods. In addition, a number of the monographs and review serials cited in Chapter 1 also contain chapters on the contact angle technique.


Surface Tension Contact Angle Interfacial Tension Helmholtz Free Energy Contact Angle Hysteresis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Aveyard and D. A. Haydon, Intro to Principles of Surface Chemistry, Cambridge Univ. Press, London (1973).Google Scholar
  2. 2.
    J. J. Davies and E. K. Rideal, Interfacial Phenomena, 2nd Edition, Academic Press, New York (1963).Google Scholar
  3. 3.
    J. J. Bikerman, Physical Surfaces, Academic Press, New York (1970).Google Scholar
  4. 4.
    A. W. Neumann, Contact angles and their temperature dependence, Adv. Colloid Interface Sci. 4, 105–192 (1974).CrossRefGoogle Scholar
  5. 5.
    R. J. Good, Contact angles and the surface free energy of solids, Surface Colloid Sci 11, 1–30 (1979).Google Scholar
  6. 6.
    A. W. Neumann and R. J. Good, Techniques of measuring contact angles, Surface Colloid Sci. 11, 31–92 (1979).Google Scholar
  7. 7.
    W. A. Zisman, Relation of the equilibrium contact angle to liquid and solid constitution, in: Contact Angle, Wettability, and Adhesion (F. M. Fowkes, ed.), Adv. Chem. Ser. 43, 1–51 (1964).Google Scholar
  8. 8.
    R. E. Johnson and R. Dettre, Wettability and contact angles, Surface Colloid Sci. 2, 85–153 (1969).Google Scholar
  9. 9.
    M. C. Phillips and A. C. Riddiford, Contact angles and the free surface energies of solids, Wetting, S.C.I. Monograph No. 25, pp. 31–56.Google Scholar
  10. 10.
    G. E. P. Elliott and A. C. Riddiford, Contact angles. Rec. Prog. Surface Sci. 2, 111–128 (1964).Google Scholar
  11. 11.
    R. C. Brown, Surface tension of liquids, Contemp. Physics 15, 301–327 (1974).CrossRefGoogle Scholar
  12. 12.
    J. F. Padday, Surface tension. Surface Colloid Sci. 1, 39–149 (1969).Google Scholar
  13. 13.
    R. Defay and G. Petre, Dynamic surface tension. Surface Colloid Sci. 3, 27–82 (1969).Google Scholar
  14. 14.
    M. V. Berry, Molecular mechanism of surface tension. Phys. Educ. 6, 79–84 (1971).CrossRefGoogle Scholar
  15. 15.
    L. Trefethen, Film: Surface tension in fluid mechanics. Encyclopedia Britannica and National Committee for Fluid Mechanics, 1969.Google Scholar
  16. 16.
    S. Ono and S. Kondo, Molecular Theory of Surface Tension, Springer-Verlag, New York (1960).Google Scholar
  17. 17.
    R. Aveyard and B. Vincent, Liquid-liquid interfaces. Prog. Surface Sci. 8, 59–102 (1977).CrossRefGoogle Scholar
  18. 18.
    G. K. Lester, Contact angles of liquids at deformable solid surfaces. J. Colloid Interface Sci. 16, 315–326 (1961).Google Scholar
  19. 19.
    J. J. Bikerman, Contribution to the Thermodynamics of Surfaces, privately published, 1961, Chaps. 3 and 4.Google Scholar
  20. 20.
    A. I. Rusanov, Theory of wetting of elastically deformed bodies, Colloid J. USSR 37, 614–641 (1975).Google Scholar
  21. 21.
    A. I. Rusanov, Thermodynamics of deformable solid surfaces, J. Colloid Interface Sci. 63, 330–345 (1978).CrossRefGoogle Scholar
  22. 22.
    J. D. Andrade, R. N. King, D. E. Gregonis, and D. L. Coleman, Surface characterization of PHEMA. Contact angle methods in water, J. Polym. Sci. Symp. 66, 313–336 (1979).CrossRefGoogle Scholar
  23. 23.
    R. D. Bagnall, J. A. D. Annis, and P. A. Arundel,… Adsorption of plasma proteins on hydrophobic surfaces, J. Biomed. Materials Res. 12, 653–663 (1978).CrossRefGoogle Scholar
  24. 24.
    R. C. Weast, ed., CRC Handbook of Chemistry and Physics, 60th Ed., CRC Press, Boca Raton, Florida (1980).Google Scholar
  25. 25.
    J. A. Dean, ed., Lange’s Handbook of Chemistry, 11th Ed., McGraw-Hill, New York (1973).Google Scholar
  26. 26.
    J. E. Lane and D. O. Jordan,… Surface tension by means of a vertical plate balance, Aust. J. Chem. 23, 2153–2170 (1970).CrossRefGoogle Scholar
  27. 27.
    G. Loglio, A. Ficalbi, and R. Cini, Surface tension-temperature coefficients for water, J. Colloid Interface Sci. 64, 198 (1978).CrossRefGoogle Scholar
  28. 28.
    K. Johansson,… Accurate surface temperature… dγ/dT for water… J. Colloid Interface Sci. 48, 176–177 (1974).CrossRefGoogle Scholar
  29. 29.
    R. E. Baier, V. L. Gott, and A. Feruse, Surface Chemical evaluation…, Trans. Am. Soc. Art. Int. Org. 16, 50–57 (1979).Google Scholar
  30. 30.
    K. E. Keller, ed., Guidelines for Physicochemical Characterization of Biomaterials, NIH Publ. No. 80–2186 (Sept., 1980).Google Scholar
  31. 31.
    J. Brandrup and E. H. Immergut, eds., Polymer Handbook, 2nd Ed., Wiley, New York 1975.Google Scholar
  32. 32.
    L. Smith, C. Doyle, D. E. Gregonis, and J. D. Andrade, Surface oxidation of cis-trans polybutadiene J. Appl. Polym. Sci. 26, 1269–1276 (1982).CrossRefGoogle Scholar
  33. 33.
    R. L. Bendure, Dynamic adhesion tension measurement, J. Colloid Interface Sci., 42, 137–144 (1973).CrossRefGoogle Scholar
  34. 34.
    L. M. Smith, L. Bowman, and J. D. Andrade, Contact angle analysis of hydrated contact lenses, Proc. Int. Symp. on Contact Lenses and Artificial Eyes, Durham, England, July 12–15, 1982, pp. 279–286.Google Scholar
  35. 35.
    E. Neumann, Molecular hysteresis and its cybernetic significance. Angew. Chem. Int. Ed. Engl. 12, 356–369 (1973).CrossRefGoogle Scholar
  36. 36.
    D. H. Everett, Adsorption hysteresis, in: Solid-Gas Interface (A. Flood, ed.), Vol. 2, pp. 1055–1113, Dekker, New York (1967).Google Scholar
  37. 37.
    R. E. Johnson and R. H. Dettre, Contact angle hysteresis. I., in: Contact Angle, Wettability, and Adhesion (F. M. Fowkes, ed.), Adv. Chem. Ser. 43, 112–135 (1964).Google Scholar
  38. 38.
    R. H. Dettre and R. E. Johnson, Contact angle hysteresis. II., in: Contact Angle, Wettability, and Adhesion (F. M. Fowkes, ed.), Adv. Chem. Ser. 43, 136–144 (1964).Google Scholar
  39. 39.
    E. Bayramli, T. G. M. van de Wen, and S. G. Mason, Tensiometric studies on wetting, Can. J. Chem. 59, 1954–1961 (1981).CrossRefGoogle Scholar
  40. 40.
    J. D. Eick, R. J. Good, and A. W. Neumann, Thermodynamics of contact angles. II., J. Colloid Interface Sci. 53, 235 (1975).CrossRefGoogle Scholar
  41. 41.
    J. F. Oliver, C. Huh, and S. G. Mason, Effects of solid surface roughness on wetting, Colloids Surfaces 1, 79–104 (1980).CrossRefGoogle Scholar
  42. 42.
    R. E. Johnson, Jr. and R. H. Dettre, Contact angle hysteresis. III, J. Phys. Chem. 68, 1744–1750 (1964).CrossRefGoogle Scholar
  43. 43.
    R. H. Dettre and R. E. Johnson, Jr., Contact angle hysteresis. IV., J. Phys. Chem. 69, 1507–1515 (1965).CrossRefGoogle Scholar
  44. 44.
    A. W. Neumann and R. J. Good, Thermodynamics of contact angles. I. J. Colloid Interface Sci. 38, 341–358 (1972).CrossRefGoogle Scholar
  45. 45.
    A. B. D. Cassie, Contact angles, Disc. Faraday Soc. 3, 11–15 (1948).CrossRefGoogle Scholar
  46. 46.
    E. B. Dussan, Spreading of liquids on solid surfaces, Ann. Rev. Fluid Mech. 11, 371–400 (1979).CrossRefGoogle Scholar
  47. 47.
    R. J. Hansen and T. Y. Toong, Dynamic contact angle and its relationship to forces of hydrodynamic origin, J. Colloid Interface Sci. 37, 196–207 (1971).CrossRefGoogle Scholar
  48. 48.
    E. Rukenstein and C. S. Dunn, Slip velocity during wetting of solids. J. Colloid Interface Sci. 59, 135–138 (1977).CrossRefGoogle Scholar
  49. 49.
    C. O. Timmons and W. A. Zisman, Effect of liquid structure on contact angle hysteresis, J. Colloid Interface Sci. 165–171 (1966).Google Scholar
  50. 50.
    M. C. Phillips and A. C. Riddiford, Dynamic contact angles. II., J.Colloid Interface Sci. 41, 77–85 (1972).CrossRefGoogle Scholar
  51. 51.
    S. Windreich and A. Silberberg, Interaction of lipid multilayers with water, J.Colloid Interface Sci. 77, 427–434 (1980).CrossRefGoogle Scholar
  52. 52.
    R. J. Good and E. D. Kotsidas, Contact angles on swollen polymers, J. Adhesion 10, 17–24 (1979).CrossRefGoogle Scholar
  53. 53.
    J. F. M. Pennings and B. Bosman, Relaxation of the surface energy of solid polymers, Colloid Polym. Sci. 257, 720–724 (1979).CrossRefGoogle Scholar
  54. 54.
    A. Baszkin, M. Nishino, and L. Terminassian-Saraga, S-L adhesion of oxidized polyethylene films. J.Colloid Interface Sci. 54, 317–322 (1976).CrossRefGoogle Scholar
  55. 55.
    T. J. McCarthy, Polymer surface modification by diffusion of functional groups, Organic Coatings and Applied Polymer Science Preprints, 48, 520–522 (1983).Google Scholar
  56. 56.
    H. Yasuda, A. K. Sharma, and T. Yasuda, Effect of orientation and mobility of polymer molecules at surfaces on contact angle hysteresis, J.Polymer Sci. Phys. 19, 1285–1291 (1981).CrossRefGoogle Scholar
  57. 57.
    J. Tse and A. W. Adamson, Adsorption and contact angle, J. Colloid Interface Sci. 72, 515–523 (1979).CrossRefGoogle Scholar
  58. 58.
    R. J. Good and E. D. Kotsidas, Contact angle of water on polystyrene. J.Colloid Interface Sci. 66, 360–362 (1978).CrossRefGoogle Scholar
  59. 59.
    M. J. Owen, Surface activity of silicones, Ind. Eng. Chem., Prod. Res. Develop 19, 97–103 (1980).CrossRefGoogle Scholar
  60. 60.
    F. J. Holly and M. F. Refojo, Wettability of hydrogels, J.Biomed. Materials Res. 9, 315–326 (1975).CrossRefGoogle Scholar
  61. 61.
    I. Langmuir, Overturning and anchoring of monolayers, Science 87, 493–500 (1938).CrossRefGoogle Scholar
  62. 62.
    A. Okawa, B. S. Thesis, Department of Materials Science and Engineering, University of Utah, June, 1983.Google Scholar
  63. 63.
    Z. Kessaissia, E. Papirer, and J.-B. Donnet, Surface energy of silicas grafted with alkyl chains of increasing lengths, J. Colloid Interface Sci. 82, 526–533 (1981).CrossRefGoogle Scholar
  64. 64.
    Z. Kessaissia, E. Papirer, and J.-B. Donnet, Molecular transitions of alkyl chains grafted onto silicas, J. Colloid Interface Sci. 79, 257–263 (1981).CrossRefGoogle Scholar
  65. 65.
    J. D. Andrade, S. M. Ma, R. N. King, D. E. Gregonis, Contact angles at the S-W interface, J. Colloid Interface Sci. 72, 488–494 (1979).CrossRefGoogle Scholar
  66. 66.
    R. N. King, J. D. Andrade, S. M. Ma, D. E. Gregonis, and L. R. Brostrom, Interfacial tension of acrylic gel-water interfaces, J. Colloid Interface Sci., in press (1985).Google Scholar
  67. 67.
    D. E. Gregonis, R. Hsu, D. E. Buerger, L. M. Smith, and J. D. Andrade, Wettability of polymers and hydrogels in Macromolecular Solutions (R. B. Seymour and G. A. Stahl, eds.), pp. 120–133, Pergamon, London (1982).Google Scholar
  68. 68.
    A. W. Adamson, Physical Chemistry of Surfaces, 4th ed., Wiley, New York (1982).Google Scholar
  69. 69.
    A. I. Bailey, A. G. Price and S. McKay, Interfacial energies of… films of fatty acids, Spec. Disc. Faraday Soc. 1, 118–127 (1970).CrossRefGoogle Scholar
  70. 70.
    A. M. Schwartz, Contact angle hysteresis, J.Colloid interface Sci. 75, 404–408 (1980).CrossRefGoogle Scholar
  71. 71.
    F. J. Holly, Contact angle… as indicator of surface polarization, J. Colloid Interface Sci., 61, 435–437 (1977).CrossRefGoogle Scholar
  72. 72.
    J. A. Finch and G. W. Smith, Contact angles and wetting, in: Anionic Surfactants (E. H. Lucassen-Reynders, ed.), pp. 317–382, Dekker, New York (1981).Google Scholar
  73. 73.
    R. N. King, Surface characterization of synthetic polymers, Ph.D. Thesis, University of Utah, Spring, 1980.Google Scholar
  74. 74.
    S. C. Weidert and S. I. Stupp, Electrostatic interfacial phenomena, Polymer Prepr. Am. Chem. Soc., Div. Polym. Chem. 24, 217–218 (1983).Google Scholar
  75. 75.
    F. R. Eirich, Factors in interface conversion, in: Interface Conversion for Polymer Coatings (P. Weiss and G. D. Cheever, eds.), pp. 350–378, Amer. Elsevier, New York (1968).Google Scholar
  76. 76.
    J. D. Andrade, Interfacial phenomena and biomaterials, Med. Inst. 7, 110–120 (1973).Google Scholar
  77. 77.
    J. L. Hackel, S. Hackwood, J. J. Veselka, and G. Beni, Electrowetting switch for multimode optical fibers, Appl. Opt. 22, 1765–1770 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Joseph D. Andrade
    • 1
  • Lee M. Smith
    • 1
  • Donald E. Gregonis
    • 1
  1. 1.Departments of Bioengineering, Materials Science and Engineering, and PharmaceuticsUniversity of UtahSalt Lake CityUSA

Personalised recommendations