Advertisement

Surface Infrared Spectroscopy

  • Kristine Knutson
  • Donald J. Lyman

Abstract

Infrared spectroscopy traditionally involved determination of the electromagnetic radiation absorbed by an organic compound as a function of the wavelength of radiation transmitted through the entire sample thickness. The infrared region of electromagnetic radiation includes wavelengths from 7.8 × 10-5 to 1 × 10-1 cm, although the mid-infrared region generally studied includes wavelengths from 2.5 × 10-4 to 5 × 10-3 cm.

Keywords

Incident Angle Sampling Depth Internal Reflection Evanescent Wave Effective Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. J. Harrick, Use of infrared absorption in germanium to determine carrier distribution for injection and extraction, Phys. Rev. 103, 1173–1181 (1956).CrossRefGoogle Scholar
  2. 2.
    N. J. Harrick, Effect of the metal-to-semiconductor potential on the semiconductor surface barrier height, J. Phys. Chem. Solids 8, 106–108 (1959).CrossRefGoogle Scholar
  3. 3.
    N. J. Harrick, Surface chemistry from spectral analysis of totally internally reflected radiation, J. Phys. Chem. 64, 1110–1114 (1960).CrossRefGoogle Scholar
  4. 4.
    N. J. Harrick, Study of physics and chemistry of surfaces from frustrated total internal reflections, Phys. Rev. Lett. 4, 224–226 (1960).CrossRefGoogle Scholar
  5. 5.
    J. Fahrenfort, Attenuated total reflection, A new principle for the production of useful infra-red reflection spectra of organic compounds, Spectrochim. Acta 17, 698–709 (1961).CrossRefGoogle Scholar
  6. 6.
    J. Fahrenfort and W. M. Visser, On the determination of optical constants in the infrared by attenuated total reflection, Spectrochim. Acta 18, 1103–1116 (1962).Google Scholar
  7. 7.
    W. N. Hansen, A new spectrophotometric technique using multiple attenuated total reflection, Anal. Chem. 35, 765–766 (1963).CrossRefGoogle Scholar
  8. 8.
    P. C. Painter, M. M. Coleman, and J. L. Koenig, The Theory of Vibrational Spectroscopy and Its Applications to Polymeric Materials, John Wiley and Sons, New York (1982).Google Scholar
  9. 9.
    N. L. Alpert, W. E. Keizer, and H. A. Szymanski, IR Theory and Practice of Infrared Spectroscopy, Second Edition, Plenum Press, New York (1970).Google Scholar
  10. 10.
    R. T. Conley, Infrared Spectroscopy, Second Edition, Allyn and Bacon, Boston (1972).Google Scholar
  11. 11.
    N. B. Colthup, L. H. Daly, and S. E. Wiberly, Introduction to Infrared and Raman Spectroscopy, Second Edition, Academic Press, New York (1975).Google Scholar
  12. 12.
    R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectroscopic Identification of Organic Compounds, Third Edition, John Wiley and Sons, New York (1974).Google Scholar
  13. 13.
    R. Zbinden, Infrared Spectroscopy of High Polymers, Academic Press, New York (1964).Google Scholar
  14. 14.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules, Volume One, Third Edition, Chapman and Hall, London (1975).Google Scholar
  15. 15.
    L. J. Bellamy, Advances in Infrared Group Frequencies, Volume Two of The Infrared Spectra of Complex Molecules, Chapman and Hall, London (1978).Google Scholar
  16. 16.
    M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Fifth Edition, Pergamon Press, New York (1975).Google Scholar
  17. 17.
    D. W. Dearholt and W. R. McSpadden, Electromagnetic Wave Propagation, McGraw-Hill, New York (1973).Google Scholar
  18. 18.
    R. H. Good, Jr. and T. J. Nelson, Classical Theory of Electric and Magnetic Field, Academic Press, New York (1971).Google Scholar
  19. 19.
    G. R. Fowles, Introduction to Modern Optics, Holt, Rinehart and Winston, New York (1968).Google Scholar
  20. 20.
    M. V. Klein, Optics, John Wiley and Sons, New York (1970).Google Scholar
  21. 21.
    R. W. Ditchburn, Light, Third Edition, Academic Press, New York (1976).Google Scholar
  22. 22.
    M. A. Plonus, Applied Electromagnetics, McGraw-Hill, New York (1978).Google Scholar
  23. 23.
    J. Fahrenfort and W. M. Visser, Remarks on the determination of optical constants from ATR measurements, Spectrochim. Acta 21, 1433–1435 (1965).CrossRefGoogle Scholar
  24. 24.
    W. N. Hansen, Expanded formulas for attenuated total reflection and the derivation of absorption rules for single and multiple ATR spectrometer cells, Spectrochim. Acta 21, 815–833 (1965).CrossRefGoogle Scholar
  25. 25.
    W. N. Hansen, T. Kuwana, and R. A. Osteryoung, Observation of electrode-solution interface by means of internal reflection spectrometry, Anal. Chem. 38, 1810–1821 (1966).CrossRefGoogle Scholar
  26. 26.
    W. N. Hansen, On the determination of optical constants by a two-angle internal reflection method, Spectrochim. Acta 21, 209–210 (1965).CrossRefGoogle Scholar
  27. 27.
    W. N. Hansen, Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium, J. Opt. Soc. Am. 58, 380–390 (1968).CrossRefGoogle Scholar
  28. 28.
    N. J. Harrick, Optical spectrum of the semiconductor surface states from frustrated total internal reflections, Phys. Rev. 125, 1165–1170 (1962).CrossRefGoogle Scholar
  29. 29.
    N. J. Harrick, Electric field strengths at totally reflecting interfaces, J. Opt. Soc. Am. 55, 851–857 (1965).CrossRefGoogle Scholar
  30. 30.
    N. J. Harrick, Vertical double-pass multiple reflection element for internal reflection spectroscopy, Appl. Opt. 5, 1–3 (1966).CrossRefGoogle Scholar
  31. 31.
    N. J. Harrick, Introductions to polymer symposium, Reflectance spectroscopy, J. Colloid Interface Sci. 47, 591–594 (1974).CrossRefGoogle Scholar
  32. 32.
    N. J. Harrick, Multiple reflection cells for internal reflection spectrometry, Anal. Chem. 36, 188–191 (1964).CrossRefGoogle Scholar
  33. 33.
    N. J. Harrick, Use of frustrated total internal reflection to measure film thickness and surface reliefs, J. Appl. Phys. 33, 2774–2775 (1962).CrossRefGoogle Scholar
  34. 34.
    N. J. Harrick, Double-beam internal reflection spectrometer, Appl. Opt. 4, 1664–1665 (1965).CrossRefGoogle Scholar
  35. 35.
    N. J. Harrick, Total internal reflection and its application to surface studies, Ann. N.Y. Acad. Sci. 101, 928–959 (1963).CrossRefGoogle Scholar
  36. 36.
    N. J. Harrick and F. K. du Pré, Effective thickness of bulk materials and of thin films for internal reflection spectroscopy, Appl. Opt. 5, 1739–1743 (1966).CrossRefGoogle Scholar
  37. 37.
    T. Hirschfeld, High sensitivity attenuated total-reflection spectroscopy, Appl. Spectrosc. 20, 336–338 (1966).CrossRefGoogle Scholar
  38. 38.
    T. Hirschfeld, Accuracy and optimization of the two prism technique for calculating the optical constants from ATR data, Appl. Spectrosc. 24, 277–282 (1970).CrossRefGoogle Scholar
  39. 39.
    T. Hirschfeld, Subsurface layer studies by attenuated total reflection Fourier transform spectroscopy, Appl. Spectrosc. 31, 289–292 (1977).CrossRefGoogle Scholar
  40. 40.
    T. Hirschfeld, Procedures for attenuated total reflection study of extremely small samples, Appl. Opt. 6, 715–718 (1967).CrossRefGoogle Scholar
  41. 41.
    T. Hirschfeld, Determination of optical constants by ATR measurements, Spectrochim. Acta 22, 1823–1824 (1966).CrossRefGoogle Scholar
  42. 42.
    T. Hirschfeld, Relationships between the Goos-Hänchen shift and the effective thickness in attenuated total reflection spectroscopy, Appl. Spectrosc. 31, 243–244 (1977).CrossRefGoogle Scholar
  43. 43.
    N. Bloembergen and P. S. Pershan, Light waves at the boundary of non-linear media, Phys. Rev. 128, 606–622 (1962).CrossRefGoogle Scholar
  44. 44.
    N. Bloembergen and C. H. Lee, Total reflection in second-harmonic generation, Phys. Rev. Lett. 19, 835–837 (1967).CrossRefGoogle Scholar
  45. 45.
    F. Goos and H. Hänchen, Ein neuer und fundamentaler versuch zur total-reflexion, Ann. Physik 1, 333–346 (1947).CrossRefGoogle Scholar
  46. 46.
    B. R. Horowitz and T. Tamir, Lateral displacement of a light beam at a dielectric interface, J. Opt. Soc. Am. 61, 586–594 (1971).CrossRefGoogle Scholar
  47. 47.
    H. K. V. Lotsch, Beam displacement at total reflection: The Goos-Hänchen effect, I., Optik 32, 116–137 (1970).Google Scholar
  48. 48.
    H. K. V. Lotsch, Beam displacement at total reflection: The Goos-Hänchen effect, II., Optik 32, 189–204 (1970).Google Scholar
  49. 49.
    H. K. V. Lotsch, Beam displacement at total reflection: The Goos-Hänchen effect, III., Optik 32, 299–319 (1971).Google Scholar
  50. 50.
    H. K. V. Lotsch, Beam displacement at total reflection: The Goos-Hänchen effect, IV., Optik 32, 553–569 (1971).Google Scholar
  51. 51.
    H. K. V. Lotsch, Reflection and refraction of a beam of light at a plane interface, J. Opt. Soc. Am. 58, 551–561 (1968).CrossRefGoogle Scholar
  52. 52.
    H. Kogelnik and H. P. Weber, Rays, stored energy, and power flow in dielectric waveguides, J. Opt. Soc. Am. 64, 174–185 (1974).CrossRefGoogle Scholar
  53. 53.
    R. H. Renard, Total reflection: A new evaluation of the Goos-Hänchen shift, J. Opt. Soc. Am. 54, 1190–1197 (1964).CrossRefGoogle Scholar
  54. 54.
    A. W. Snyder and J. D. Love, Goos-Hänchen shift, Appl. Opt. 15, 236–238 (1976).CrossRefGoogle Scholar
  55. 55.
    H. G. Tompkins, The physical basis for analysis of the depth of absorbing species using internal reflection spectroscopy, Appl Spectrosc. 28, 335–341 (1974).CrossRefGoogle Scholar
  56. 56.
    P. A. Wilks, Jr., Internal reflection spectroscopy I: Effect of angle of incidence change, Appl. Spectrosc. 22, 782–784 (1968).CrossRefGoogle Scholar
  57. 57.
    J. Fahrenfort, in: Infra-red Spectroscopy and Molecular Structure, An Outline of the Principles (M. Davies, ed.), pp. 377–404, Elsevier, New York (1963).Google Scholar
  58. 58.
    N. J. Harrick, Internal Reflection Spectroscopy, John Wiley and Sons, New York (1967).Google Scholar
  59. 59.
    G. Kortüm, Reflectance Spectroscopy: Principles, Methods, Applications, Springer-Verlag, New York (1969).Google Scholar
  60. 60.
    Standard definitions of terms and symbols relating to molecular spectroscopy, Annual Book of ASTM Standards Ε 131–81, 1–7 (1981).Google Scholar
  61. 61.
    J. Brandrup and E. H. Immergut, ed., Polymer Handbook, 2nd edition, John Wiley and Sons, New York (1975).Google Scholar
  62. 62.
    T. Hirschfeld, Solution for the sample contact problem in ATR, Appl. Spectrosc. 21, 335–336 (1967).CrossRefGoogle Scholar
  63. 63.
    F. M. Mirabella, Jr., Quantitative analysis of polymers by attenuated total reflectance Fourier-transform infrared spectroscopy: Vinyl acetate and methyl content of polyethylenes, J. Polym. Sci., Phys. Ed. 20, 2309–2315 (1982).CrossRefGoogle Scholar
  64. 64.
    R. Kellner and F. Unger, IR-spektroskopische Charakterisierung der blutverträglichkeit von polyurethan-silicon-copolymeren, Ζ. Anal. Chem. 283, 349–355 (1977).CrossRefGoogle Scholar
  65. 65.
    A. Garton, A. Stolow, and D. M. Wiles, Infrared spectroscopic characterization of surface coatings on glass fibres, J. Mater. Sci. 16, 3211–3214 (1981).CrossRefGoogle Scholar
  66. 66.
    K. V. Nel’son, T. G. Arkatova, and V. M. Zolotarev, Study of attenuated multiple total internal reflectance infrared spectra of elastomers filled with carbon black, Polym. Sci. U.S.S.R. 15, 560–566 (1973).CrossRefGoogle Scholar
  67. 67.
    R. S. Whitehouse, P. J. C. Counsell, and G. Lewis, Composition of rubber/resin adhesive films: 1. Surface composition as determined by ATR spectroscopy, Polymer 17, 699–704 (1976).CrossRefGoogle Scholar
  68. 68.
    A. Garton, S. W. Kim, and D. M. Wiles, Chlorinated hydrocarbon coupling agents for mica-polypropylene composites, J. Appl. Polym. Sci. 27, 4179–4189 (1982).CrossRefGoogle Scholar
  69. 69.
    A. Garton, S. W. Kim, and D. M. Wiles, Modification of the interface morphology in mica-reinforced polypropylene, J. Polym. Sci., Lett. Ed. 20, 273–278 (1982).CrossRefGoogle Scholar
  70. 70.
    L. T. Nguyen, N. H. Sung, and N. P. Suh, Determination of optimum glow discharge parameters based on ATR-FTIR spectra, J. Polym. Sci., Lett. Ed. 18, 541–548 (1980).CrossRefGoogle Scholar
  71. 71.
    A. R. Blythe, D. Briggs, C. R. Kendall, D. G. Rance, and V. J. I. Zichy, Surface modification of polyethylene by electrical discharge treatment and the mechanism of autoadhesion, Polymer 19, 1273–1278 (1978).CrossRefGoogle Scholar
  72. 72.
    M. Anand, R. E. Cohen, and R. F. Baddour, Surface modification of low density polyethylene in fluorine gas plasma, Polymer 22, 361–371 (1981).CrossRefGoogle Scholar
  73. 73.
    K. Doughty and P. Pantelis, Surface effects in corona-charged polyvinylidene fluoride, J. Mater. Sci. 15, 974–978 (1980).CrossRefGoogle Scholar
  74. 74.
    S. Yamakawa, Surface modification of polyethylene by radiation-induced grafting for adhesive bonding, I. Relationship between adhesive bond strength and surface composition, J. Appl. Polym. Sci. 20, 3057–3072 (1976).CrossRefGoogle Scholar
  75. 75.
    S. Yamakawa, F. Yamamoto, and Y. Kato, Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. 2. Relationship between adhesive bond strength and surface structure, Macromolecules 9, 754–758 (1976).CrossRefGoogle Scholar
  76. 76.
    W. L. Hawkins, Recent advances in mechanisms for the stabilization of polyolefins, J. Polym. Sci., Symp. 57, 319–328 (1976).CrossRefGoogle Scholar
  77. 77.
    M. Ito and R. S. Porter, The effects of oxygen diffusion on the surface photooxidation of polystyrene, J. Appl. Polym. Sci. 27, 4471–4476 (1982).CrossRefGoogle Scholar
  78. 78.
    D. J. Carlsson, L. H. Gan, and D. M. Wiles, Photodegradation of aramids. II. Irradiation in air, J. Polym. Sci., Chem. Ed. 16, 2365–2376 (1978).CrossRefGoogle Scholar
  79. 79.
    D. J. Carlsson and D. M. Wiles, Photooxidation of polypropylene films. IV. Surface changes studied by attenuated total reflection spectroscopy, Macromolecules 4, 174–179 (1971).CrossRefGoogle Scholar
  80. 80.
    D. J. Carlsson and D. M. Wiles, Photooxidation of polypropylene films. V. Origin of preferential surface oxidation, Macromolecules 4, 179–184 (1971).CrossRefGoogle Scholar
  81. 81.
    D. J. Carlsson and D. M. Wiles, The photodegradation of polypropylene films. II. Photolysis of ketonic oxidation products, Macromolecules 2, 587–597 (1969).CrossRefGoogle Scholar
  82. 82.
    C. Decker and M. Balandier, Degradation of poly(vinyl chloride) by UV radiation. I. Kinetics and quantum yields, Eur. Polym. J. 18, 1085–1091 (1982).CrossRefGoogle Scholar
  83. 83.
    R. L. Levy, D. L. Fanter, and C. J. Summers, Spectroscopic evidence for mechanochemical effects of moisture in epoxy resins, J. Appl. Polym. Sci. 24, 1643–1664 (1979).CrossRefGoogle Scholar
  84. 84.
    D. J. Carlsson and S. M. Milnera, Hydrolysis of resin-coated poly(ethylene terephthalate) yarns, J. Appl. Polym. Sci. 27, 1589–1600 (1982).CrossRefGoogle Scholar
  85. 85.
    G. Colin, J. D. Cooney, D. J. Carlsson, and D. M. Wiles, Deterioration of plastic films under soil burial conditions, J. Appl. Polym. Sci. 26, 509–519 (1981).CrossRefGoogle Scholar
  86. 86.
    J. L. Krzeminski and E. Wiechowicz-Kowalska, Structural changes in the surface layer of plastics as a result of sliding friction in a metal-thermoplastic system, Polym. Eng. Sci. 21, 594–602 (1981).CrossRefGoogle Scholar
  87. 87.
    M. G. Wyzgoski, Effects of oven aging on ABS, poly(acrylonitrile-butadiene-styrene), Polym. Eng. Sci. 16, 265–269 (1976).CrossRefGoogle Scholar
  88. 88.
    S. I. Stupp and S. H. Carr, Chemical origin of thermally stimulated discharge currents in polyacrylonitrile, J. Polym. Sci., Phys. Ed. 15, 485–499 (1977).CrossRefGoogle Scholar
  89. 89.
    S. I. Stupp and S. H. Carr, Spectroscopic analysis of electrically polarized polyacrylonitrile, J. Polym. Sci., Phys. Ed. 16, 13–28 (1978).CrossRefGoogle Scholar
  90. 90.
    P. A. Flournoy, Applications of attenuated-total-reflection spectroscopy to absolute intensity measurements, J. Chem. Phys. 39, 3156–3157 (1963).CrossRefGoogle Scholar
  91. 91.
    P. A. Flournoy, Attenuated total reflection from oriented polypropylene films, Spectrochim. Acta 22, 15–20 (1966).CrossRefGoogle Scholar
  92. 92.
    P. A. Flournoy and W. J. Schaffers, Attenuated total reflection spectra from surfaces of anisotropic, absorbing films, Spectrochim. Acta 22, 5–13 (1966).CrossRefGoogle Scholar
  93. 93.
    J. K. Barr and P. A. Flournoy, in: Physical Methods in Macromolecular Chemistry, Volume 1 (B. Carroll, ed.) pp. 109–164, Marcel Dekker, New York (1969).Google Scholar
  94. 94.
    C. S. P. Sung, A modified technique for measurement of orientation from polymer surfaces by attenuated total reflection infrared dichroism, Macromolecules 14, 591–594 (1981).CrossRefGoogle Scholar
  95. 95.
    J. P. Hobbs, C. S. P. Sung, K. Krishnan, and S. Hill, Characterization of surface structure and orientation in polypropylene and poly(ethylene terephthalate) films by modified attenuated total reflection IR dichroism studies, Macromolecules 16, 193–199 (1983).CrossRefGoogle Scholar
  96. 96.
    G. F. Trott, Orientation on elongation at rupture of two injection-molded isotactic polypropylenes, J. Appl. Polym. Sci. 14, 2421–2425 (1970).CrossRefGoogle Scholar
  97. 97.
    A. E. Tshmel, V. I. Vettegren, and V. M. Zolotarev, Investigation of the molecular structure of polymer surfaces by ATR spectroscopy, J. Macromol. Sci., Phys. B21, 243–264 (1982).Google Scholar
  98. 98.
    N. I. Stas’kov, V. I. Golovachev, and S. S. Gusev, Anisotropy of IR absorption of an extruded polyethylene terephthalate film, Polym. Sci. U.S.S.R. 19, 2628–2634 (1977).CrossRefGoogle Scholar
  99. 99.
    F. Druschke, H. W. Siesler, G. Spilgies, and H. Tengler, Molecular order and orientation in aromatic polyamide fibers by internal reflection spectroscopy and wide angle X-ray diffraction, Polym. Eng. Sci. 17, 93–95 (1977).CrossRefGoogle Scholar
  100. 100.
    J. K. Barr, Molecular orientation of fibres by polarized internal reflexion spectroscopy, Nature 215, 844 (1967).CrossRefGoogle Scholar
  101. 101.
    E. Nyilas and R. S. Ward Jr., Development of blood-compatible elastomers. V. Surface structure and blood compatibility of Avcothane® elastomers, J. Biomed. Materials Res., Symp. 8, 69–84 (1977).CrossRefGoogle Scholar
  102. 102.
    C. S. Paik Sung, C. B. Hu, E. W. Merrill, and E. W. Salzman, Surface chemical analysis of Avcothane® and Biomer® by Fourier transform IR internal reflection spectroscopy, J. Biomed. Materials Res. 12, 791–804 (1978).CrossRefGoogle Scholar
  103. 103.
    C. S. Paik Sung and C. B. Hu, Surface chemical analysis of segmented polyurethanes. Fourier transform IR internal reflection studies, in: Multiphase Polymers (S. L. Cooper and G. M. Estes, eds.) (1979).Google Scholar
  104. 103a.
    C. S. Paik Sung and C. B. Hu, Surface chemical analysis of segmented polyurethanes. Fourier transform IR internal reflection studies, Adv. Chem. Ser. 176, 69–82 (1979).CrossRefGoogle Scholar
  105. 104.
    M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physicochemical characterization and in vivo blood tolerability of cast and extruded Biomer®, J.Biomed. Materials Res. 17, 1–22 (1983).CrossRefGoogle Scholar
  106. 105.
    K. Knutson and D. J. Lyman, Morphology of block copolyurethanes. II. FTIR and ESCA techniques for studying surface morphology, in: Biomedical and Dental Applications of Polymers (C. G. Gebelein and F. F. Koblitz, eds.), pp. 173–188, Plenum Press, New York (1980).Google Scholar
  107. 106.
    K. Knutson and D. J. Lyman, The effect of polyether segment molecular weight on the bulk and surface morphologies of copolyether-urethane-ureas, in: Biomaterials: Interfacial Phenomena and Applications (S. L. Cooper and N. A. Peppas, eds.) 109–132 (1982).CrossRefGoogle Scholar
  108. 106a.
    K. Knutson and D. J. Lyman, The effect of polyether segment molecular weight on the bulk and surface morphologies of copolyether-urethane-ureas, Adv. Chem. Ser. 199, 109–132 (1982).CrossRefGoogle Scholar
  109. 107.
    S. I. Stupp, J. W. Kauffman, and S. H. Carr, Interactions between segmented polyurethane surfaces and the plasma protein fibrinogen, J. Biomed. Materials Res. 11, 237–250 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Kristine Knutson
    • 1
  • Donald J. Lyman
    • 2
  1. 1.Department of PharmaceuticsUniversity of UtahSalt Lake CityUSA
  2. 2.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations