X-ray photoelectron spectroscopy (XPS) is generally regarded as an important and key technique for the surface characterization and analysis of biomedical polymers.(1) This technique, also called ESCA (Electron Spectroscopy for Chemical Analysis), provides a total elemental analysis, except for hydrogen and helium, of the top 10–200 Å (depending on the sample and instrumental conditions) of any solid surface which is vacuum stable or can be made vacuum stable by cooling. Chemical bonding information is also provided. Of all the presently available instrumental techniques for surface analysis, XPS is generally regarded as being the most quantitative, the most readily interpretable, and the most informative with regard to chemical information. For these reasons it has been highly recommended and used by biomedical researchers for the analysis of medical polymers. The basic advantages and disadvantages of the technique are given in Table 1. Although the method requires relatively sophisticated instrumentation, many universities, industrial R and D groups, and commercial service laboratories provide access to their instruments on a collaborative or fee for service basis.


Binding Energy Free Path Soft Segment Photoionization Cross Section Ultraviolet Photoelectron Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Keller, ed., Guidelines for Physicochemical Characterization of Biomaterials, NIH Publ. No. 80–2186 (1980).Google Scholar
  2. 2.
    K. Siegbahn, Electron spectroscopy for atoms, molecules, and condensed matter, Science 217, 111 (1982).CrossRefGoogle Scholar
  3. 3.
    C. S. Fadley, in: Electron Spectroscopy (C. R. Brundle and A. D. Baker, eds.), Vol. II, pp. 1–156, Pergamon Press, New York (1978).Google Scholar
  4. 4.
    H. Siegbahn and L. Karlsson, Electron Spectroscopy for Atoms, Molecules, and Condensed Matter, North-Holland, Amsterdam, in press (1985).Google Scholar
  5. 5.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, ESCAAtomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Nova Acta Regiae Societatis Sci. Upsallensis, Series 4, Vol. 20, pp. 1–282 (1967). (Also available as a U.S. Government Report, A.D. 844 315, October, 1968, available from National Technical Information Service—NTIS, Springfield, Va.)Google Scholar
  6. 6.
    K. Siegbahn, C. Nordling, VG. Johansson, J. Hedmark, P. F. Heden, K. Hamrin, U. Gelius, T. Bergmark, L. O. Werme, R. Manne, and T. Baer, ESCA Applied to Free Molecules, North-Holland, Amsterdam (1969).Google Scholar
  7. 7.
    T. A. Carlson, Photoelectron and Auger Spectroscopy, Plenum Press, New York (1975).Google Scholar
  8. 8.
    D. Briggs, ed., Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy, Heyden and Son, Philadelphia (1977).Google Scholar
  9. 9.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp. (1979).Google Scholar
  10. 10.
    H. Windawi and F. F.-L. Ho, Applied Electron Spectroscopy for Chemical Analysis, Wiley, New York (1982).Google Scholar
  11. 11.
    C. R. Brundle and A. D. Baker, eds., Electron Spectroscopy, Vols. 1–5, Academic Press, New York (1977–1983).Google Scholar
  12. 12.
    D. T. Clark, ESCA applied to polymers, Adv. Polym. Sci. 24, 125–188 (1977).CrossRefGoogle Scholar
  13. 13.
    D. T. Clark and W. J. Feast, Application of ESCA to studies of structure and bonding in polymeric systems, J. Macromol. Sci., Revs. Macromol. Chem. C12, 191–286 (1975).CrossRefGoogle Scholar
  14. 14.
    A. Dilks, XPS for investigation of polymeric materials, in: Reference 11, Vol. 4, pp. 227–359 (1981).Google Scholar
  15. 15.
    A. Dilks, Polymer surfaces, Anal. Chem. 53, 802A–816A (1981).CrossRefGoogle Scholar
  16. 16.
    B. D. Ratner, Application of XPS to biomedical polymers: A review, Ann. Biomed. Eng. 11, 313–336 (1983).CrossRefGoogle Scholar
  17. 17.
    J. A. Gardella, Jr, and D. M. Hercules, Comparison of static SIMS, ISS, and XPS for surface analysis of acrylic polymers, Anal Chem. 53, 1879–1884 (1981).CrossRefGoogle Scholar
  18. 18.
    Dr. R. N. King (now at Norton-Christensen Co., Salt Lake City).Google Scholar
  19. 19.
    J. H. Weaver and G. Margaritonido, Solid state photoelectron spectroscopy with synchrotron radiation, Science 206, 151–156 (1979).CrossRefGoogle Scholar
  20. 20.
    Addresses of XPS manufacturers: (a) Surface Science Laboratories, 1206 Charleston Rd., Mountain View, CA 94043; (b) Kratos Scientific Instruments, Inc., 24 Booker Street, Westwood, NJ 07675; (c) V G Scientific Limited, The Birches Industrial Estate, Imber-horne Lane, East Grinstead, Sussex, England RH19 1QY; (d) Leybold-Heraeus, Inc., 5 Alder Drive, East Syracuse, NY 13057; (e) Perkin-Elmer, Physical Electronics Div., 6509 Flying Cloud Dr., Eden Prairie, MN 55344.Google Scholar
  21. 21.
    D. T. Clark and H. R. Thomas, ESCA: Core levels of simple homopolymers, J. Polym. Sci., Chem. 16, 791–820 (1978).CrossRefGoogle Scholar
  22. 22.
    H. R. Thomas, Ph.D. Dissertation, University of Durham (1977).Google Scholar
  23. 23.
    M. M. Millard, Fibers and Polymers, in: Industrial Applications of Surface Analyses (L. A. Casper and C. J. Powell, eds.), Am. Chem. Soc. Symp. Ser. 199, 143–202 (1982).CrossRefGoogle Scholar
  24. 24.
    B. D. Ratner, P. K. Weathersby, A. S. Hoffman, M. A. Kelly, and L. A. Scharpen, Biomaterial applications as studied by the ESCA technique, J. Appl. Polym. Sci. 22, 643–664 (1978).CrossRefGoogle Scholar
  25. 25.
    D. N. Hendrickson, Photoelectron Spectroscopy, Chapter in: R. S. Drago, Physical Methods in Chemistry, pp. 566–588, Saunders Publishing Co., Philadelphia (1977).Google Scholar
  26. 26.
    P. W. Atkins, Physical Chemistry, W. H. Freeman and Co., San Francisco (1978).Google Scholar
  27. 27.
    J. H. Scofield, Photoionization cross sections at 1254 and 1487 eV, J. Electron Spectrosc. 8, 129–137 (1976).CrossRefGoogle Scholar
  28. 28.
    C. J. Powell, Recent progress in quantifications of surface analysis techniques, Applic. Surface Sci. 4, 492–509 (1980).CrossRefGoogle Scholar
  29. 29.
    M. P. Seah, Quantitative analysis of surfaces by XPS, Surface Interface Analysis 2, 222–239 (1980).CrossRefGoogle Scholar
  30. 30.
    C. J. Powell and P. E. Larson, Quantitative analysis of surfaces by XPS, Applic. Surface Sci. 1, 186–201 (1978).CrossRefGoogle Scholar
  31. 31.
    C. J. Powell, in: Quantitative Surface Analysis of Materials (N. S. McIntyre, ed.), Am. Soc. Testing Materials Spec. Tech. Publ. 643, 5–30 (1978).CrossRefGoogle Scholar
  32. 32.
    G. K. Iwamoto, R. N. King, and J. D. Andrade in: Photon, Electron, and Ion Probes of Polymer Structure and Properties, (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), Am. Chem. Soc. Symp. Ser. 162, 404–418 (1981).Google Scholar
  33. 33.
    W. J. Carter, G. K. Schweitzer, and T. A. Carlson, Model for quantitative analysis in XPS, J. Electron Spectrosc. 5, 827–835 (1974).CrossRefGoogle Scholar
  34. 34.
    R. F. Reilman, A. Msezane, and S. T. Manson, Relative intensities in photoelectron spectroscopy of atoms and molecules, J. Electron Spectrosc. 8, 389–394 (1976).CrossRefGoogle Scholar
  35. 35.
    M. P. Seah and W. A. Dench, Electron inelastic mean free paths, Surface Interface Analysis 1, 2–11 (1979).CrossRefGoogle Scholar
  36. 36.
    C. D. Wagner, L. E. Davis, and W. M. Riggs, Energy dependence of the electron mean free path, Surface Interface Analysis 2, 53–55 (1980).CrossRefGoogle Scholar
  37. 37.
    D. R. Penn, Quantitative chemical analysis by ESCA, J. Electron Spectrosc. 9, 29–40 (1976).CrossRefGoogle Scholar
  38. 38.
    S. M. Hall, J. D. Andrade, S. M. Ma, and R. N. King, Photoelectron mean free paths in Ba stearate layers, J. Electron Spectrosc. 17, 181–189 (1979).CrossRefGoogle Scholar
  39. 39.
    P. Cadman, S. Evans, G. Gossedge, and J. M. Thomas, Electron inelastic mean free paths in polymers, J. Polym. Sci., Polym. Lett. 16, 461–464 (1978).CrossRefGoogle Scholar
  40. 40.
    D. T. Clark, H. R. Thomas, and D. Shuttleworth, Electron Mean free paths in polymers, J. Polymer Sci, Polym. Lett. 16, 465–471 (1978).CrossRefGoogle Scholar
  41. 41.
    D. T. Clark, Y. C. T. Fok, and G. G. Roberts, Electron mean free paths in Langmuir-Blodgett multilayers, J. Electron Spectrosc. 22, 173–185 (1981).CrossRefGoogle Scholar
  42. 42.
    G. K. Wertheim and S. Hufner, ESCA and the quantitative analysis of metallic systems, J. Inorg. Nucl. Chem. 38, 1701–1704 (1976).CrossRefGoogle Scholar
  43. 43.
    A. Proctor and P. M. A. Sherwood, Data analysis techniques in XPS, Anal. Chem. 54, 13–19 (1982).CrossRefGoogle Scholar
  44. 44.
    W. L. Dunn and T. S. Dunn, An asymmetric model for XPS analysis, Surface and Interface Analysis 4, 77–88 (1982).CrossRefGoogle Scholar
  45. 45.
    J. F. M. Pennings and B. Bosman, Analysis of copolymer surfaces, Colloid Polym. Sci. 258, 1099–1103 (1980).CrossRefGoogle Scholar
  46. 46.
    C. D. Wagner, L. H. Gale, and R. H. Raymond, Two-dimensional chemical state plots, Anal. Chem. 51, 466–482 (1979).CrossRefGoogle Scholar
  47. 47.
    D. T. Clark, ESCA of Polymers, in: Characterization of Metal and Polymer Surfaces (L.-H. Lee, ed.), Vol. 2, pp. 5–51, Academic Press, New York (1977).Google Scholar
  48. 48.
    D. T. Clark, and A. Dilks, Shake-up Phenomena in Polymers, J. Polym. Sci., Chem. 14, 533–542 (1976).CrossRefGoogle Scholar
  49. 49.
    D. T. Clark, D. B. Adams, A. Dilks, J. Peeling and H. R. Thomas, Shake-up Phenomena in Polymer Systems, J. Electron Spect. 8, 51–60 (1976).CrossRefGoogle Scholar
  50. 50.
    J. J. Pireaux, Ph.D. Dissertation, University of Namur, Belgium (1976).Google Scholar
  51. 51.
    D. T. Clark and H. R. Thomas, Core and valence energy levels of a series of polyacrylates, J. Polym. Sci., Chem. 14, 1671–1700 (1976).CrossRefGoogle Scholar
  52. 52.
    J. J. Pireaux, J. Riga, R. Caudano, and J. Verbist, in: Photon, Electron, and Ion Probes of Polymer Structure and Properties, (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), Am. Chem. Soc. Symp. Ser. 162, 169–202 (1981).CrossRefGoogle Scholar
  53. 53.
    J. J. Pireaux, J. Riga, R. Caudano, J. J. Verbist, J. M. Andre, J. Delhalle, and S. Delhalle, Electronic structure of fluoropolymers, J. Electron Spect. 5, 531–550 (1974).CrossRefGoogle Scholar
  54. 54.
    S. Siggia and J. G. Hanna, Quantitative Organic Analysis Via Functional Groups, 4th ed., Wiley, New York (1978).Google Scholar
  55. 55.
    C. N. Reilley and D. S. Everhart, in: Reference 10, pp. 105–134 (1982),Google Scholar
  56. 55a.
    C. N. Reilley and D. S. Everhart Anal. Chem. 53, 665–676 (1981).CrossRefGoogle Scholar
  57. 56.
    D. E. Williams, Analysis of polymer surface functional groups, Abstracts, 182nd ACS National Meeting Am. Chem. Soc, p. INDE-23, unpublished preprint (1981).Google Scholar
  58. 57.
    D. Briggs and C. R. Kendall, Derivatization of discharge-treated LDPE, Int. J. Adhesion and Adhesives, 13–17 (January, 1982).Google Scholar
  59. 58.
    D. S. Everhart and C. N. Reilley, Functional group mobility, Surface Interface Analysis 3, 126–133 (1981).CrossRefGoogle Scholar
  60. 59.
    M. M. Millard and M. S. Masri, Protein functional group modification, Anal. Chem. 46, 1820–1822 (1974).CrossRefGoogle Scholar
  61. 60.
    R. A. Dickie, J. S. Hammond, J. E. de Vries, and J. W. Holubka, Surface derivatization of hydroxyl functional acrylic copolymers, Anal. Chem. 54, 2045–2049 (1982).CrossRefGoogle Scholar
  62. 61.
    C. D. Batich and R. C. Wendt, in: Photon, Electron, and Ion Probes, (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), Am. Chem. Soc. Symp. Ser. 162, 221–236 (1981).CrossRefGoogle Scholar
  63. 62.
    J. J. Pireaux, Smoothing and resolution enhancement, Appl. Spectrosc. 30, 219–224 (1976).CrossRefGoogle Scholar
  64. 63.
    A. E. Pavlath and M. M. Millard, XPS through even derivatives, Appl. Spectrosc. 33, 502–509 (1979).CrossRefGoogle Scholar
  65. 64.
    A. Proctor and P. M. A. Sherwood, Smoothing: An Extended Sliding Least-Squares Approach, Anal. Chem. 52, 2315–2321 (1980).CrossRefGoogle Scholar
  66. 65.
    J. E. Cahill, Derivative spectroscopy, Am. Lab. 79–85 (1979).Google Scholar
  67. 66.
    R. P. Vasquez, J. D. Klein, J. J. Barton, and F. J. Grunthaner, Maximum-entropy spectral estimation, J. Electron Spect. 23, 63–81 (1981).CrossRefGoogle Scholar
  68. 67.
    A. E. Hughes and C. C. Phillips, Study of transmission function of a commercial hemispherical electron energy analyzer, Surface and Interface Analysis 4, 220–226 (1982).CrossRefGoogle Scholar
  69. 68.
    T. A. Carlson, Basic assumptions and recent developments in quantitative XPS, Surface and Interface Analysis 4, 125–134 (1982).CrossRefGoogle Scholar
  70. 69.
    J. C. Ashley, Inelastic interactions of low-energy electrons with organic solids: Simple formulae, IEEE Trans. Nucl. Sci. NS-27, 1454–1458 (1980).Google Scholar
  71. 70.
    J. C. Ashley and M. W. Williams, Electron mean free paths in solid organic insulators, Rad. Res. 81, 364–373 (1980).CrossRefGoogle Scholar
  72. 71.
    J. C. Ashley, Simple model for electron inelastic mean free paths, J. Electron Spect. 28, 177–194 (1982).CrossRefGoogle Scholar
  73. 72.
    J. C. Ashley and C. J. Tung, Electron inelastic mean free paths in several solids, Surface and Interface Analysis 4, 52–55 (1982).CrossRefGoogle Scholar
  74. 73.
    D. T. Clark, M. M. Abu-Shbak, and W. J. Brennan, Electron mean free paths as a function of kinetic energy, J. Electron spect. 28, 11–22 (1982).CrossRefGoogle Scholar
  75. 74.
    W. A. Fraser, J. V. Florio, W. N. Delgass, and W. D. Robertson, Surface sensitivity and angular dependence of X-ray photoelectron spectra, Surface Sci. 36, 661–674 (1973).CrossRefGoogle Scholar
  76. 75.
    C. S. Fadley, Angular-dependent XPS, Prog. Solid State Chem. 11, 265–343 (1976).CrossRefGoogle Scholar
  77. 76.
    L. V. Phillips, L. Salvati, W. J. Carter, and D. M. Hercules, Quantitative Surface Analysis by ESCA, in: Quantitative Surface Analysis of Materials (N. S. McIntyre, ed.), pp. 47–63, ASTM STP 643, Am. Soc. Testing and Materials, Philadelphia (1978).CrossRefGoogle Scholar
  78. 77.
    R. W. Payntor, Modification of the Beer-Lambert Equation for Application to Concentration Gradients, Ph.D. Thesis, University of Surrey, England, October, 1981: Surface Interface Analysis 3, 186–187 (1981).CrossRefGoogle Scholar
  79. 78.
    B. D. Ratner, R. W. Payntor, and H. R. Thomas, Polyurethane surfaces—an XPS study, Abstracts, 9th Ann. Meet. Soc. for Biomaterials, April 1983.Google Scholar
  80. 79.
    S. Suzer, Multiplets in atoms and ions displayed by photoelectron spectroscopy, J. Chem. Educ. 59, 814–815 (1982).CrossRefGoogle Scholar
  81. 80.
    H. R. Thomas and J. J. O’Malley, Surface studies on multi-component polymer systems by XPS, Macromolecules 12, 323–329 (1979).CrossRefGoogle Scholar
  82. 81.
    J. J. O’Malley, H. R. Thomas, and G. M. Lee, Surface studies on multi-component polymer systems by XPS, Macromolecules 12, 996–1001 (1979).CrossRefGoogle Scholar
  83. 82.
    I. Elliott, C. Doyle, and J. D. Andrade, Core level sensitivity factors for quantitative XPS, J. Electron Spect. 28, 303–316 (1983).CrossRefGoogle Scholar
  84. 83.
    D. T. Clark and H. R. Thomas, Electron mean free paths as a function of kinetic energy in polymeric films, J. Polym. Sci., Chem. 15, 2843–2867 (1977).CrossRefGoogle Scholar
  85. 84.
    R. J. Baird, Ph.D. Thesis, University of Hawaii (1977).Google Scholar
  86. 85.
    G. W. Simmons and B. C. Beard, Surface analysis applied to adhesion, Abstracts, Pittsburgh Conf. on Anal. Chem. and Applied Spectrosc., 212, 1981.Google Scholar
  87. 86.
    P. R. Moses, L. M. Wier, J. C. Lennox, H. O. Finklea, J. R. Lenhard, and R. W. Murray, XPS of alkylamine-silanes bound to metal oxide electrodes, Anal. Chem. 50, 576–583 (1978).CrossRefGoogle Scholar
  88. 87.
    D. T. Clark, Advances in ESCA applied to polymer characterization, Pure Appl. Chem. 54, 415–438 (1982).CrossRefGoogle Scholar
  89. 88.
    T. Ohmichi, H. Tamaki, H. Kawasaki, and S. Tatsuta, in: Physicochemical Aspects of Polymer Surfaces, (K. Mittal, ed.), pp. 793–800, Plenum Press, New York (1983).Google Scholar
  90. 89.
    A. Barrie, Instrumentation for electron spectroscopy, in: Reference 8, pp. 79–120 (1977).Google Scholar
  91. 90.
    H. Fellner-Feldegg, U. Gelius, B. Wannberg, A. G. Nilsson, E. Basilier, and K. Siegbahn, New developments in ESCA instrumentation, J. Electron Spect. 5, 643–689 (1974).CrossRefGoogle Scholar
  92. 91.
    G. E. McGuire, Instrumental in ESCA, in: Reference 10, pp. 1–18 (1982).Google Scholar
  93. 92.
    C. D. Wagner, Role of Auger lines in XPS, in: Reference 8, pp. 249–272 (1977).Google Scholar
  94. 93.
    C. D. Wagner, D. E. Passoja, H. F. Hillery, T. G. Kinisky, H. A. Six, W. T. Jansen, and J. A. Taylor, Auger and XPS of Al—O and Si—O compounds, J. Vac. Sci. Technol. 21, 933–944 (1982).CrossRefGoogle Scholar
  95. 94.
    C. D. Wagner, Combined use of Auger and photoelectron lines, J. Electron Spect. 10, 305–315 (1977).CrossRefGoogle Scholar
  96. 95.
    C. D. Wagner, D. A. Zatko, and R. H. Raymond, Use of the oxygen KLL Auger lines..., Anal. Chem. 52, 1445–1451 (1980).CrossRefGoogle Scholar
  97. 96.
    B. D. Cullity, Elements of X-ray Diffraction, Addison Wesley Publ. Co., Reading, Mass. (1956).Google Scholar
  98. 97.
    R. N. King, Ph.D. Dissertation, University of Utah (1980).Google Scholar
  99. 98.
    J. J. Pireaux, J. Riga, R. Caudano, J. J. Verbist, J. Delhalle, S. Delhalle, J. M. Andre, and Y. Gobillon, Polymer primary structures studied by ESC A, Physica Scripta 16, 329–338 (1977).CrossRefGoogle Scholar
  100. 99.
    J. D. Andrade, Surface analysis of materials, Med. Dev. Diag. Ind., 22–23 (June, 1980).Google Scholar
  101. 100.
    P. K. Ghosh, Introduction to Photoelectron Spectroscopy, Wiley-Interscience, New York (1983).Google Scholar
  102. 101.
    D. A. Stephenson and N. J. Binkowski, XPS of silica, J. Noncrystalline Solids 22, 399–421 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Joseph D. Andrade
    • 1
  1. 1.Departments of Bioengineering and Materials Science, College of EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations