Advertisement

Polymeric Oriented Monolayers and Multilayers as Model Surfaces

  • Bernd Hupfer
  • Helmut Ringsdorf

Abstract

All living cells are surrounded by a lipid bilayer membrane in which a variety of proteins (e.g., enzymes) are embedded (fluid mosaic model; Figure 1). Phospholipids and cholesterol represent the major part of the lipids of a biomembrane. Figure 2 illustrates the structure of some typical amphiphilic membrane components with hydrophobic alkyl chains and hydrophilic head groups. The amount of protein in biological membranes varies between 40 and 60%(3); however, in highly specialized membranes values between 20% (myelin sheath of nerve axons; electrical isolator) and 75% (mitochondrial inner membrane; enzyme system of the respiratory chain) may occur. Furthermore, the incorporation of proteins in a membrane and in particular as reticulum on its inside (spectrin of erythrocyte mem-branes(4)) increases its stability.

Keywords

Surface Pressure Mixed Monolayer Hydrophilic Head Group Monomolecular Film Black Lipid Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Weissmann, in: Cell MembranesBiochemistry, Cell Biology and Pathology (G. Weissmann and R. Clairborne, eds.), pp. 257–266, HP Publishing, New York (1975).Google Scholar
  2. 2.
    S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175,720–731 (1972).CrossRefGoogle Scholar
  3. 3.
    A. L. Lehninger, Biochemistry, p. 210, Worth, New York (1970).Google Scholar
  4. 4.
    S. J. Singer, in: Cell MembranesBiochemistry, Cell Biology and Pathology (G. Weissmann and R. Claribrone, eds.), pp. 35–44, HP Publishing, New York (1975).Google Scholar
  5. 5.
    L. Gros, H. Ringsdorf, and H. Schupp, Polymeric antitumor agents on a molecular and on a cellular level?, Angew. Chem., Int. Ed. Engl. 20, 305–325 (1981).CrossRefGoogle Scholar
  6. 6.
    G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces, Interscience, New York (1966).Google Scholar
  7. 7.
    H. T. Tien, Bimolecular Lipid Membranes, Theory and Practice, Marcel Dekker, New York (1974).Google Scholar
  8. 8.
    R. E. Pagano and J. N. Weinstein, Interaction of liposomes with mammalian cells, Ann. Rev. Biophys. Bioeng. 7, 435–468 (1978).CrossRefGoogle Scholar
  9. 9.
    F. Szoka and D. Papahadjopoulos, Comparative properties and methods of preparation of lipid vesicles (liposomes) Ann. Rev. Biophys. Bioeng. 9, 467–508 (1980).CrossRefGoogle Scholar
  10. 10.
    H. Kuhn, D. Moebius, and H. Buecher, in: Physical Methods of Chemistry (A. Weissberger and B. W. Rossiter, eds.), Vol. I, part 3B, pp. 577–702, Wiley, New York (1972).Google Scholar
  11. 11.
    I. Langmuir, The mechanism of the surface phenomena of flotation, Trans. Faraday Soc. 15, 62–74 (1920).CrossRefGoogle Scholar
  12. 12.
    K. B. Blodgett, Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc. 57, 1007–1022 (1935).CrossRefGoogle Scholar
  13. 13.
    K. Kuhn and D. Moebius, Systems of monomolecular layers—Assembling and physico-chemical properties, Angew. Chem., Int. Ed. Engl. 10, 620–637 (1971).CrossRefGoogle Scholar
  14. 14.
    J. H. Fendler, Surfactant vesicles as membrane mimetic agents: Characterization and utilization, Acc. Chem. Res. 13, 7–13 (1980).CrossRefGoogle Scholar
  15. 15.
    G. Gregoriadis and A. C. Allison, Liposomes in Biological Systems, Wiley, New York (1980).Google Scholar
  16. 16.
    H. G. Khorana and P. Chakakrabarti, A new approach to the study of phospholipid-protein interaction in biological membranes. Synthesis of fatty acids and phospholipids containing photosensitive groups, Biochemistry 14, 5021–5033 (1975).CrossRefGoogle Scholar
  17. 17.
    A. Akimoto, K. Dorn, L. Gros, H. Ringsdorf, and H. Schupp, Polymer model membranes, Angew. Chem., Int. Ed. Engl. 20, 90–91 (1981).CrossRefGoogle Scholar
  18. 18.
    H. Bader and H. Risgsdorf, Liposomes from α, ω-dipolar amphiphiles with a polymerizable diyne moiety in the hydrophobic chain, J. Polym. Sci., Polym. Chem. Ed. 20, 1623–1628 (1982).CrossRefGoogle Scholar
  19. 19.
    D. Day, H. H. Hub, and H. Ringsdorf, Polymerization of mono- and bi-functional diacetylene derivatives in monolayers at the gas-water interface, Isr. J. Chem. 18, 325–329 (1979).Google Scholar
  20. 20.
    H. Ringsdorf and H. Schupp, Polymerization of substituted butadienes at the gas-water interface, J. Macromol. Sci., Chem. A15, 1015–1026 (1981).Google Scholar
  21. 21.
    H. H. Hub, B. Hupfer, H. Koch, and H. Ringsdorf, Polymerization of lipid and lysolipid like diacetylenes in monolayers and liposomes, J. Macromol. Sci., Chem. A15, 701–715 (1981).Google Scholar
  22. 22.
    H. H. Hub, B. Hupfer, H. Koch, and H. Ringsdorf, Polymerizable phospholipid analogs— New stable biomembrane and cell models Angew. Chem., Int. Ed. Engl. 19, 938–940 (1980).CrossRefGoogle Scholar
  23. 23.
    B. Hupfer, H. Ringsdorf, and H. Schupp, Polymeric phospholipid monolayers, Makromol. Chem. 182, 247–253 (1981).CrossRefGoogle Scholar
  24. 24.
    H. Koch and H. Ringsdorf, Topochemical polymerization of a diacetylene sulfolipid analog in monolayers and liposomes, Makromol. Chem. 182, 255–259 (1981).CrossRefGoogle Scholar
  25. 25.
    D. Naegele and H. Ringsdorf, Polymerization in ordered systems: Polymerization of octadecylmethacrylate in monolayers at the gas/water interface, J. Polym. Sci, Polym. Chem. Ed. 15, 2821–2834 (1977).CrossRefGoogle Scholar
  26. 26.
    R. Benz, W. Press, and H. Ringsdorf, Black Lipid Membranes from polymerizable lipids, Angew. Chem., Int. Ed. Engl. 21, 368–369 (1982).CrossRefGoogle Scholar
  27. 27.
    D. S. Johnston, S. Sanghera, M. Pons, and D. Chapman, Phospholipid polymers—Synthesis and spectral characteristics, Biochim. Biophys. Acta 602, 57–69 (1980).CrossRefGoogle Scholar
  28. 28.
    D. S. Johnston, S. Sanghera, A. Manjon-Rubio, and D. Chapman, The formation of polymeric model biomembranes from diacetylenic fatty acids and phospholipids, Biochim. Biophys. Acta 602, 213–216 (1980).CrossRefGoogle Scholar
  29. 29.
    E. Lopez, D. F. O’Brien, and T. H. Whitesides, Structural effects on the photopolymerization of bilayer membranes, J. Am. Chem. Soc. 104, 305–307 (1982).CrossRefGoogle Scholar
  30. 30.
    P. Tundo, D. J. Kippenberger, P. L. Klahn, N. E. Prieto, T.-C. Jao, and J. H. Fendler, Functionally polymerized surfactant vesicles, J. Am. Chem. Soc. 104, 456–461 (1982).CrossRefGoogle Scholar
  31. 31.
    S. L. Regen, A. Singh, G. Oehme, and M. Singh, Polymerized phosphatidylcholine vesicles. Synthesis and characterization, J. Am. Chem. Soc. 104, 791–795 (1982).CrossRefGoogle Scholar
  32. 32.
    T. Kunitake, N. Nakashima, K. Takarabe, M. Nagai, A. Tsuge, and H. Yanagi, Vesicles of polymeric bilayer and monolayer membranes, J. Am. Chem. Soc. 103, 5945–5947 (1981).CrossRefGoogle Scholar
  33. 33.
    B. Hupfer and H. Ringsdorf, Spreading and polymerization behavior of diacetylenic phospholipids at the gas/water interface, Chem. Physics Lipids 33, 263–282 (1983).CrossRefGoogle Scholar
  34. 34.
    G. Gee, Reactions in the monolayers of drying oils. II. Polymerization of the oxidized forms of the maleic anhydride compound of β-elaeostearin, Proc. Roy. Soc. A153, 129–141 (1935).Google Scholar
  35. 35.
    C. H. Bamford and G. C. Eastwood, Solid-phase addition polymerization, Quart. Rev. 23, 271–299 (1969).CrossRefGoogle Scholar
  36. 36.
    S. A. Letts, T. Fort, Jr., and J. B. Lando, Polymerization of oriented monolayers of vinyl stearate, J. Colloid Interface Sci. 56, 64–75 (1976).CrossRefGoogle Scholar
  37. 37.
    K. Fukuda, Polymerization of vinyl stearate in emulsion and in monomolecular film, Sci. Rep. Saitama University AIII, 143–152 (1959); Chem. Abstr. 54, 12648h (1960).Google Scholar
  38. 38.
    H. Z. Friedlaender, Oriented polymeric films, U.S. Patent 3,031,721, May 1, 1962; Chem. Abstr. 57, 14008b (1962).Google Scholar
  39. 39.
    M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of vinyl monomers at gas/water interfaces, Japan Atomic Energy Res. Inst. Repts. 5028, 1–11 (1973).Google Scholar
  40. 39a.
    M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of vinyl monomers at gas/water interfaces, Chem. Abstr. 80, 3828p, 27492a (1974).Google Scholar
  41. 40.
    M. Nishii, M. Hatada, and K. Hirota, Radiation-induced polymerization of vinyl stearate monomer layer at gas/water interface, Japan Atomic Energy Res. Inst. Repts. 5029, 18–25 (1974).Google Scholar
  42. 40a.
    M. Nishii, M. Hatada, and K. Hirota, Radiation-induced polymerization of vinyl stearate monomer layer at gas/water interface, Chem. Abstr. 81, 91995q (1974).Google Scholar
  43. 41.
    J. B. Lando and T. Fort, Jr., in: Polymerization of Organized Systems (H. G. Elias, ed.), Midland Macromolecular Monographs, Vol. 3, pp. 63–78, Gordon & Breach, New York (1977).Google Scholar
  44. 42.
    N. Beredjick and W. J. Burlant, Polymerization of monolayers of vinyl and divinyl monomers, J. Polym. Sci., Part A-1, 2807–2818 (1970).Google Scholar
  45. 43.
    R. Ackermann, O. Inacker, and H. Ringsdorf, Polyreactions in oriented systems. 1. Polymerization of acrylic and methacrylic compounds in monomolecular layers, Kolloid-Z., Z. Polym. 249, 1118–1126 (1971).CrossRefGoogle Scholar
  46. 44.
    M. Hatada and M. Nishii, Polymerization induced by electron beam. Irradiation of octadecyl methacrylate in the form of a multilayer or monolayer, J. Polym. Sci., Polym. Chem. Ed. 15, 927–935 (1977).CrossRefGoogle Scholar
  47. 45.
    A. Dubault, C. Casagrande, and M. Veyssie, Two dimensional polymerization processes in mono- and diacrylic esters, J. Phys. Chem. 79, 2254–2259 (1975).CrossRefGoogle Scholar
  48. 46.
    M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of monomolecular films of octadecylacrylate at the gas/water interface, J. Colloid Interface Sci. 45, 502–505 (1973).CrossRefGoogle Scholar
  49. 47.
    M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of octadecyl acrylate at a nitrogen-water interface under constant surface pressure conditions, Macromolecules 8, 19–22 (1975).CrossRefGoogle Scholar
  50. 48.
    M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of octadecyl acrylate at nitrogen-water interface. Surface balance for constant pressure operation and analyses of irradiated film substances, Japan Atomic Energy Res. Inst. Repts. 5029, 8–17 (1974).Google Scholar
  51. 48a.
    M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of octadecyl acrylate at nitrogen-water interface. Surface balance for constant pressure operation and analyses of irradiated film substances, Chem. Abstr. 81, 92035p (1974).Google Scholar
  52. 49.
    G. Scheibe and H. Schuller, About the polymerization of monomolecular films of vinyl isobutylether, Z Elekrochem. 59, 861–862 (1955).Google Scholar
  53. 50.
    A. Dubault, M. Veyssie, L. Liebert, and L. Strzelecki, Crosslinked polymerization of monolayers of 1-n-octadecyloxy-2,3-bis(acryloyloxy)propane, Nature (London) 245, 94–95 (1973).Google Scholar
  54. 51.
    G. Gee, C. B. Davies, and H. W. Melville, The catalyzed polymerization of butadiene at liquid-gas interface, Trans. Faraday Soc. 35, 1298–1312 (1939).CrossRefGoogle Scholar
  55. 52.
    C. Golian, J. G. Hawke, J. Green, and J. M. Gebicki, Photocontraction of unsaturated monolayers at the air/liquid interface, Experientia 31, 34–35 (1975).CrossRefGoogle Scholar
  56. 53.
    D. Day and H. Ringsdorf, Polymerization of diacetylene carbonic acid monolayers at the gas/water interface, J Polym. Sci., Polym Lett. Ed. 16, 205–210 (1978).CrossRefGoogle Scholar
  57. 54.
    D. R. Day and H. Ringsdorf, The monolayer polymerization of 10,12-nonacosadiynoic acid studied by a spectroscopic technique, Makromol. Chem. 180, 1059–1063 (1979).CrossRefGoogle Scholar
  58. 55.
    D. Day and J. B. Lando, Morphology of crystalline diacetylene monolayers polymerized at the gas-water interface, Macromolecules 13, 1478–1483 (1980).CrossRefGoogle Scholar
  59. 56.
    D. Day and J. B. Lando, Structure determination of a poly(diacetylene)monolayer, Macromolecules 13, 1483–1487 (1980).CrossRefGoogle Scholar
  60. 57.
    H. Schupp, B. Hupfer, R. A. Van Wagenen, J. D. Andrade, and H. Ringsdorf, Surface characterization of functional poly(diacetylene) and poly(butadiene) mono- and multilayers, Colloid Polym. Sci. 260, 262–267 (1982).CrossRefGoogle Scholar
  61. 58.
    B. Hupfer, H. Schupp, J. D. Andrade, and H. Ringsdorf, Photoelectron mean free paths in poly(diacetylene) mono- and multilayers, J. Electron Spectrosc. Relat. Phenom. 23, 103–107 (1981).CrossRefGoogle Scholar
  62. 59.
    G. Wegner, Topochemical polymerization of monomers with conjugated triple bonds, Makromol. Chem. 154, 35–48 (1972).CrossRefGoogle Scholar
  63. 60.
    K. Fukuda, Y. Shibasaki, and H. Kakahara, Polycondensation of long-chain esters of α-amino acids in monolayers at air/water interface and in multilayers on solid surface, J. Macromol Sci., Chem. A15, 999–1014 (1981).Google Scholar
  64. 61.
    T. Folda, L. Gros, and H. Ringsdorf, Formation of oriented polypeptides and polyamides in monolayers and liposomes, Makromol. Chem. Rapid Commun. 3, 167–174 (1982).CrossRefGoogle Scholar
  65. 62.
    B. Tieke and G. Lieser, Influences of the structure of long-chain diynoic acids on their polymerization properties in Langmuir-Blodgett multilayers, J. Colloid Interface Sci. 88, 471–486 (1982).CrossRefGoogle Scholar
  66. 63.
    G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces, pp. 281–300, Interscience, New York (1966).Google Scholar
  67. 64.
    R. Bueschl, B, Hupfer, and H. Ringsdorf, Partially polymerized mixed monolayers and liposomes, Makromol. Chem. Rapid Commun. 3, 589–596 (1982).CrossRefGoogle Scholar
  68. 65.
    R. Ackermann, D. Naegele, and H. Ringsdorf, Polyreactions in oriented media. 4 Photoreactions of fumaric and maleic acid derivatives in multilayers, Makromol. Chem. 175, 699–700 (1974).CrossRefGoogle Scholar
  69. 66.
    D. Naegele, J. B. Lando, and H. Ringsdorf, Polymerization of cadmium octadecylfumarate in multilayers, Macromolecules 10, 1339–1344 (1977).CrossRefGoogle Scholar
  70. 67.
    B. Tieke, G. Lieser, and G. Wegner, Polymerization of diacetylenes in multilayers, J. Polym. Sci., Polym. Chem. Ed. 17, 1631–1644 (1979).CrossRefGoogle Scholar
  71. 68.
    G. Lieser, B. Tieke, and G. Wegner, Structure, phase transitions and polymerizability of multilayers of some diacetylene monocarboxylic acids, Thin Solid Films 68, 77–90 (1980).CrossRefGoogle Scholar
  72. 69.
    A. Cemel, T. Fort, Jr. and J. B. Lando, Polymerization of vinyl stearate multilayers, J. Polym. Sci., Part A-1, 2061–2083 (1972).Google Scholar
  73. 70.
    M. Putermann, T. Fort, Jr., and J. B. Lando, The polymerization and structure of mixed multilayers of ethyl and vinyl stearate, J. Colloid Interface Sci. 47, 705–718 (1974).CrossRefGoogle Scholar
  74. 71.
    V. Enkelmann and J. B. Lando, Polymerization of ordered tail-to-tail vinyl stearate bilayers, J. Polym. Sci., Polym. Chem. Ed. 15, 1843–1854 (1977).CrossRefGoogle Scholar
  75. 72.
    A. Banerjie and J. B. Lando, Radiation-induced solid state polymerization of oriented ultrathin films of octadecylacrylamide, Thin Solid Films 68, 67–75 (1980).CrossRefGoogle Scholar
  76. 73.
    A. Barraud, C. Rosilio, and A. Ruaudel-Teixier, Polymerized monomolecular layers: a new class of ultrathin resins for microlithography, Thin Solid Films 68, 91–98 (1980).CrossRefGoogle Scholar
  77. 74.
    K. Fukuda and T. Shiozawa, Conditions for formation and structural characterization of X-type and Y-type multilayers of long-chain esters, Thin Solid Films 68, 55–66 (1980).CrossRefGoogle Scholar
  78. 75.
    B. Tieke and G. Lieser, Polymerization of diacetylenes in mixed multilayers, J. Colloid Interface Sci. 83, 230–239 (1981).CrossRefGoogle Scholar
  79. 76.
    T. Kunitake and Y. Okahata, A totally synthetic bilayer membrane, J. Am. Chem. Soc. 99, 3860–3861 (1977).CrossRefGoogle Scholar
  80. 77.
    T. Kunitake, Chemistry of synthetic bilayer membranes, J. Macromol. Sci., Chem. A13, 587–602 (1979).Google Scholar
  81. 78.
    H. Bader, H. Ringsdorf, and J. Skura, Liposomes from polymerizable glycolipids, Angew. Chem., Int. Ed. Engl. 20, 91–92 (1981).CrossRefGoogle Scholar
  82. 79.
    N. Wagner, K. Dose, H. Koch, and H. Ringsdorf, Incorporation of ATP synthetase into long-term stable liposomes from a polymerizable sulfolipid, FEBS Lett. 132, 313–318 (1981).CrossRefGoogle Scholar
  83. 80.
    M. Hatada, M. Nishii and K. Hirota, Radiation-induced polymerization of octadecyl acrylate multilayers by electron beam irradiation, Japan Atomic Energy Res. Inst. Repts. 5030, 26–32 (1975); Chem. Abstr. 84, 5557f (1976).Google Scholar
  84. 81.
    M. Nishii and M. Hatada, Polymerization of vinyl stearate multilayers by electron beam irradiation, Japan Atomic Energy Res. Inst. Repts. 5030, 33–37 (1975); Chem. Abstr. 84, 44718d (1976).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Bernd Hupfer
    • 1
  • Helmut Ringsdorf
    • 1
  1. 1.Institut fur Organische ChemieJohannes Gutenberg-UniversitätMainzFederal Republic of Germany

Personalised recommendations