Skip to main content

Polymeric Oriented Monolayers and Multilayers as Model Surfaces

  • Chapter
Surface and Interfacial Aspects of Biomedical Polymers

Abstract

All living cells are surrounded by a lipid bilayer membrane in which a variety of proteins (e.g., enzymes) are embedded (fluid mosaic model; Figure 1). Phospholipids and cholesterol represent the major part of the lipids of a biomembrane. Figure 2 illustrates the structure of some typical amphiphilic membrane components with hydrophobic alkyl chains and hydrophilic head groups. The amount of protein in biological membranes varies between 40 and 60%(3); however, in highly specialized membranes values between 20% (myelin sheath of nerve axons; electrical isolator) and 75% (mitochondrial inner membrane; enzyme system of the respiratory chain) may occur. Furthermore, the incorporation of proteins in a membrane and in particular as reticulum on its inside (spectrin of erythrocyte mem-branes(4)) increases its stability.

In the beginning, there must have been a membrane.(l)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Weissmann, in: Cell MembranesBiochemistry, Cell Biology and Pathology (G. Weissmann and R. Clairborne, eds.), pp. 257–266, HP Publishing, New York (1975).

    Google Scholar 

  2. S. J. Singer and G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science 175,720–731 (1972).

    Article  CAS  Google Scholar 

  3. A. L. Lehninger, Biochemistry, p. 210, Worth, New York (1970).

    Google Scholar 

  4. S. J. Singer, in: Cell MembranesBiochemistry, Cell Biology and Pathology (G. Weissmann and R. Claribrone, eds.), pp. 35–44, HP Publishing, New York (1975).

    Google Scholar 

  5. L. Gros, H. Ringsdorf, and H. Schupp, Polymeric antitumor agents on a molecular and on a cellular level?, Angew. Chem., Int. Ed. Engl. 20, 305–325 (1981).

    Article  Google Scholar 

  6. G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces, Interscience, New York (1966).

    Google Scholar 

  7. H. T. Tien, Bimolecular Lipid Membranes, Theory and Practice, Marcel Dekker, New York (1974).

    Google Scholar 

  8. R. E. Pagano and J. N. Weinstein, Interaction of liposomes with mammalian cells, Ann. Rev. Biophys. Bioeng. 7, 435–468 (1978).

    Article  CAS  Google Scholar 

  9. F. Szoka and D. Papahadjopoulos, Comparative properties and methods of preparation of lipid vesicles (liposomes) Ann. Rev. Biophys. Bioeng. 9, 467–508 (1980).

    Article  CAS  Google Scholar 

  10. H. Kuhn, D. Moebius, and H. Buecher, in: Physical Methods of Chemistry (A. Weissberger and B. W. Rossiter, eds.), Vol. I, part 3B, pp. 577–702, Wiley, New York (1972).

    Google Scholar 

  11. I. Langmuir, The mechanism of the surface phenomena of flotation, Trans. Faraday Soc. 15, 62–74 (1920).

    Article  CAS  Google Scholar 

  12. K. B. Blodgett, Films built by depositing successive monomolecular layers on a solid surface, J. Am. Chem. Soc. 57, 1007–1022 (1935).

    Article  CAS  Google Scholar 

  13. K. Kuhn and D. Moebius, Systems of monomolecular layers—Assembling and physico-chemical properties, Angew. Chem., Int. Ed. Engl. 10, 620–637 (1971).

    Article  CAS  Google Scholar 

  14. J. H. Fendler, Surfactant vesicles as membrane mimetic agents: Characterization and utilization, Acc. Chem. Res. 13, 7–13 (1980).

    Article  CAS  Google Scholar 

  15. G. Gregoriadis and A. C. Allison, Liposomes in Biological Systems, Wiley, New York (1980).

    Google Scholar 

  16. H. G. Khorana and P. Chakakrabarti, A new approach to the study of phospholipid-protein interaction in biological membranes. Synthesis of fatty acids and phospholipids containing photosensitive groups, Biochemistry 14, 5021–5033 (1975).

    Article  Google Scholar 

  17. A. Akimoto, K. Dorn, L. Gros, H. Ringsdorf, and H. Schupp, Polymer model membranes, Angew. Chem., Int. Ed. Engl. 20, 90–91 (1981).

    Article  Google Scholar 

  18. H. Bader and H. Risgsdorf, Liposomes from α, ω-dipolar amphiphiles with a polymerizable diyne moiety in the hydrophobic chain, J. Polym. Sci., Polym. Chem. Ed. 20, 1623–1628 (1982).

    Article  CAS  Google Scholar 

  19. D. Day, H. H. Hub, and H. Ringsdorf, Polymerization of mono- and bi-functional diacetylene derivatives in monolayers at the gas-water interface, Isr. J. Chem. 18, 325–329 (1979).

    CAS  Google Scholar 

  20. H. Ringsdorf and H. Schupp, Polymerization of substituted butadienes at the gas-water interface, J. Macromol. Sci., Chem. A15, 1015–1026 (1981).

    CAS  Google Scholar 

  21. H. H. Hub, B. Hupfer, H. Koch, and H. Ringsdorf, Polymerization of lipid and lysolipid like diacetylenes in monolayers and liposomes, J. Macromol. Sci., Chem. A15, 701–715 (1981).

    CAS  Google Scholar 

  22. H. H. Hub, B. Hupfer, H. Koch, and H. Ringsdorf, Polymerizable phospholipid analogs— New stable biomembrane and cell models Angew. Chem., Int. Ed. Engl. 19, 938–940 (1980).

    Article  CAS  Google Scholar 

  23. B. Hupfer, H. Ringsdorf, and H. Schupp, Polymeric phospholipid monolayers, Makromol. Chem. 182, 247–253 (1981).

    Article  CAS  Google Scholar 

  24. H. Koch and H. Ringsdorf, Topochemical polymerization of a diacetylene sulfolipid analog in monolayers and liposomes, Makromol. Chem. 182, 255–259 (1981).

    Article  CAS  Google Scholar 

  25. D. Naegele and H. Ringsdorf, Polymerization in ordered systems: Polymerization of octadecylmethacrylate in monolayers at the gas/water interface, J. Polym. Sci, Polym. Chem. Ed. 15, 2821–2834 (1977).

    Article  CAS  Google Scholar 

  26. R. Benz, W. Press, and H. Ringsdorf, Black Lipid Membranes from polymerizable lipids, Angew. Chem., Int. Ed. Engl. 21, 368–369 (1982).

    Article  Google Scholar 

  27. D. S. Johnston, S. Sanghera, M. Pons, and D. Chapman, Phospholipid polymers—Synthesis and spectral characteristics, Biochim. Biophys. Acta 602, 57–69 (1980).

    Article  CAS  Google Scholar 

  28. D. S. Johnston, S. Sanghera, A. Manjon-Rubio, and D. Chapman, The formation of polymeric model biomembranes from diacetylenic fatty acids and phospholipids, Biochim. Biophys. Acta 602, 213–216 (1980).

    Article  CAS  Google Scholar 

  29. E. Lopez, D. F. O’Brien, and T. H. Whitesides, Structural effects on the photopolymerization of bilayer membranes, J. Am. Chem. Soc. 104, 305–307 (1982).

    Article  CAS  Google Scholar 

  30. P. Tundo, D. J. Kippenberger, P. L. Klahn, N. E. Prieto, T.-C. Jao, and J. H. Fendler, Functionally polymerized surfactant vesicles, J. Am. Chem. Soc. 104, 456–461 (1982).

    Article  CAS  Google Scholar 

  31. S. L. Regen, A. Singh, G. Oehme, and M. Singh, Polymerized phosphatidylcholine vesicles. Synthesis and characterization, J. Am. Chem. Soc. 104, 791–795 (1982).

    Article  CAS  Google Scholar 

  32. T. Kunitake, N. Nakashima, K. Takarabe, M. Nagai, A. Tsuge, and H. Yanagi, Vesicles of polymeric bilayer and monolayer membranes, J. Am. Chem. Soc. 103, 5945–5947 (1981).

    Article  CAS  Google Scholar 

  33. B. Hupfer and H. Ringsdorf, Spreading and polymerization behavior of diacetylenic phospholipids at the gas/water interface, Chem. Physics Lipids 33, 263–282 (1983).

    Article  CAS  Google Scholar 

  34. G. Gee, Reactions in the monolayers of drying oils. II. Polymerization of the oxidized forms of the maleic anhydride compound of β-elaeostearin, Proc. Roy. Soc. A153, 129–141 (1935).

    Google Scholar 

  35. C. H. Bamford and G. C. Eastwood, Solid-phase addition polymerization, Quart. Rev. 23, 271–299 (1969).

    Article  CAS  Google Scholar 

  36. S. A. Letts, T. Fort, Jr., and J. B. Lando, Polymerization of oriented monolayers of vinyl stearate, J. Colloid Interface Sci. 56, 64–75 (1976).

    Article  CAS  Google Scholar 

  37. K. Fukuda, Polymerization of vinyl stearate in emulsion and in monomolecular film, Sci. Rep. Saitama University AIII, 143–152 (1959); Chem. Abstr. 54, 12648h (1960).

    Google Scholar 

  38. H. Z. Friedlaender, Oriented polymeric films, U.S. Patent 3,031,721, May 1, 1962; Chem. Abstr. 57, 14008b (1962).

    Google Scholar 

  39. M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of vinyl monomers at gas/water interfaces, Japan Atomic Energy Res. Inst. Repts. 5028, 1–11 (1973).

    Google Scholar 

  40. M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of vinyl monomers at gas/water interfaces, Chem. Abstr. 80, 3828p, 27492a (1974).

    Google Scholar 

  41. M. Nishii, M. Hatada, and K. Hirota, Radiation-induced polymerization of vinyl stearate monomer layer at gas/water interface, Japan Atomic Energy Res. Inst. Repts. 5029, 18–25 (1974).

    Google Scholar 

  42. M. Nishii, M. Hatada, and K. Hirota, Radiation-induced polymerization of vinyl stearate monomer layer at gas/water interface, Chem. Abstr. 81, 91995q (1974).

    Google Scholar 

  43. J. B. Lando and T. Fort, Jr., in: Polymerization of Organized Systems (H. G. Elias, ed.), Midland Macromolecular Monographs, Vol. 3, pp. 63–78, Gordon & Breach, New York (1977).

    Google Scholar 

  44. N. Beredjick and W. J. Burlant, Polymerization of monolayers of vinyl and divinyl monomers, J. Polym. Sci., Part A-1, 2807–2818 (1970).

    Google Scholar 

  45. R. Ackermann, O. Inacker, and H. Ringsdorf, Polyreactions in oriented systems. 1. Polymerization of acrylic and methacrylic compounds in monomolecular layers, Kolloid-Z., Z. Polym. 249, 1118–1126 (1971).

    Article  CAS  Google Scholar 

  46. M. Hatada and M. Nishii, Polymerization induced by electron beam. Irradiation of octadecyl methacrylate in the form of a multilayer or monolayer, J. Polym. Sci., Polym. Chem. Ed. 15, 927–935 (1977).

    Article  CAS  Google Scholar 

  47. A. Dubault, C. Casagrande, and M. Veyssie, Two dimensional polymerization processes in mono- and diacrylic esters, J. Phys. Chem. 79, 2254–2259 (1975).

    Article  CAS  Google Scholar 

  48. M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of monomolecular films of octadecylacrylate at the gas/water interface, J. Colloid Interface Sci. 45, 502–505 (1973).

    Article  CAS  Google Scholar 

  49. M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of octadecyl acrylate at a nitrogen-water interface under constant surface pressure conditions, Macromolecules 8, 19–22 (1975).

    Article  CAS  Google Scholar 

  50. M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of octadecyl acrylate at nitrogen-water interface. Surface balance for constant pressure operation and analyses of irradiated film substances, Japan Atomic Energy Res. Inst. Repts. 5029, 8–17 (1974).

    Google Scholar 

  51. M. Hatada, M. Nishii, and K. Hirota, Radiation-induced polymerization of octadecyl acrylate at nitrogen-water interface. Surface balance for constant pressure operation and analyses of irradiated film substances, Chem. Abstr. 81, 92035p (1974).

    Google Scholar 

  52. G. Scheibe and H. Schuller, About the polymerization of monomolecular films of vinyl isobutylether, Z Elekrochem. 59, 861–862 (1955).

    CAS  Google Scholar 

  53. A. Dubault, M. Veyssie, L. Liebert, and L. Strzelecki, Crosslinked polymerization of monolayers of 1-n-octadecyloxy-2,3-bis(acryloyloxy)propane, Nature (London) 245, 94–95 (1973).

    CAS  Google Scholar 

  54. G. Gee, C. B. Davies, and H. W. Melville, The catalyzed polymerization of butadiene at liquid-gas interface, Trans. Faraday Soc. 35, 1298–1312 (1939).

    Article  CAS  Google Scholar 

  55. C. Golian, J. G. Hawke, J. Green, and J. M. Gebicki, Photocontraction of unsaturated monolayers at the air/liquid interface, Experientia 31, 34–35 (1975).

    Article  CAS  Google Scholar 

  56. D. Day and H. Ringsdorf, Polymerization of diacetylene carbonic acid monolayers at the gas/water interface, J Polym. Sci., Polym Lett. Ed. 16, 205–210 (1978).

    Article  CAS  Google Scholar 

  57. D. R. Day and H. Ringsdorf, The monolayer polymerization of 10,12-nonacosadiynoic acid studied by a spectroscopic technique, Makromol. Chem. 180, 1059–1063 (1979).

    Article  CAS  Google Scholar 

  58. D. Day and J. B. Lando, Morphology of crystalline diacetylene monolayers polymerized at the gas-water interface, Macromolecules 13, 1478–1483 (1980).

    Article  CAS  Google Scholar 

  59. D. Day and J. B. Lando, Structure determination of a poly(diacetylene)monolayer, Macromolecules 13, 1483–1487 (1980).

    Article  CAS  Google Scholar 

  60. H. Schupp, B. Hupfer, R. A. Van Wagenen, J. D. Andrade, and H. Ringsdorf, Surface characterization of functional poly(diacetylene) and poly(butadiene) mono- and multilayers, Colloid Polym. Sci. 260, 262–267 (1982).

    Article  CAS  Google Scholar 

  61. B. Hupfer, H. Schupp, J. D. Andrade, and H. Ringsdorf, Photoelectron mean free paths in poly(diacetylene) mono- and multilayers, J. Electron Spectrosc. Relat. Phenom. 23, 103–107 (1981).

    Article  CAS  Google Scholar 

  62. G. Wegner, Topochemical polymerization of monomers with conjugated triple bonds, Makromol. Chem. 154, 35–48 (1972).

    Article  CAS  Google Scholar 

  63. K. Fukuda, Y. Shibasaki, and H. Kakahara, Polycondensation of long-chain esters of α-amino acids in monolayers at air/water interface and in multilayers on solid surface, J. Macromol Sci., Chem. A15, 999–1014 (1981).

    CAS  Google Scholar 

  64. T. Folda, L. Gros, and H. Ringsdorf, Formation of oriented polypeptides and polyamides in monolayers and liposomes, Makromol. Chem. Rapid Commun. 3, 167–174 (1982).

    Article  CAS  Google Scholar 

  65. B. Tieke and G. Lieser, Influences of the structure of long-chain diynoic acids on their polymerization properties in Langmuir-Blodgett multilayers, J. Colloid Interface Sci. 88, 471–486 (1982).

    Article  CAS  Google Scholar 

  66. G. L. Gaines, Insoluble Monolayers at Liquid-Gas Interfaces, pp. 281–300, Interscience, New York (1966).

    Google Scholar 

  67. R. Bueschl, B, Hupfer, and H. Ringsdorf, Partially polymerized mixed monolayers and liposomes, Makromol. Chem. Rapid Commun. 3, 589–596 (1982).

    Article  CAS  Google Scholar 

  68. R. Ackermann, D. Naegele, and H. Ringsdorf, Polyreactions in oriented media. 4 Photoreactions of fumaric and maleic acid derivatives in multilayers, Makromol. Chem. 175, 699–700 (1974).

    Article  Google Scholar 

  69. D. Naegele, J. B. Lando, and H. Ringsdorf, Polymerization of cadmium octadecylfumarate in multilayers, Macromolecules 10, 1339–1344 (1977).

    Article  CAS  Google Scholar 

  70. B. Tieke, G. Lieser, and G. Wegner, Polymerization of diacetylenes in multilayers, J. Polym. Sci., Polym. Chem. Ed. 17, 1631–1644 (1979).

    Article  CAS  Google Scholar 

  71. G. Lieser, B. Tieke, and G. Wegner, Structure, phase transitions and polymerizability of multilayers of some diacetylene monocarboxylic acids, Thin Solid Films 68, 77–90 (1980).

    Article  CAS  Google Scholar 

  72. A. Cemel, T. Fort, Jr. and J. B. Lando, Polymerization of vinyl stearate multilayers, J. Polym. Sci., Part A-1, 2061–2083 (1972).

    Google Scholar 

  73. M. Putermann, T. Fort, Jr., and J. B. Lando, The polymerization and structure of mixed multilayers of ethyl and vinyl stearate, J. Colloid Interface Sci. 47, 705–718 (1974).

    Article  Google Scholar 

  74. V. Enkelmann and J. B. Lando, Polymerization of ordered tail-to-tail vinyl stearate bilayers, J. Polym. Sci., Polym. Chem. Ed. 15, 1843–1854 (1977).

    Article  CAS  Google Scholar 

  75. A. Banerjie and J. B. Lando, Radiation-induced solid state polymerization of oriented ultrathin films of octadecylacrylamide, Thin Solid Films 68, 67–75 (1980).

    Article  CAS  Google Scholar 

  76. A. Barraud, C. Rosilio, and A. Ruaudel-Teixier, Polymerized monomolecular layers: a new class of ultrathin resins for microlithography, Thin Solid Films 68, 91–98 (1980).

    Article  CAS  Google Scholar 

  77. K. Fukuda and T. Shiozawa, Conditions for formation and structural characterization of X-type and Y-type multilayers of long-chain esters, Thin Solid Films 68, 55–66 (1980).

    Article  CAS  Google Scholar 

  78. B. Tieke and G. Lieser, Polymerization of diacetylenes in mixed multilayers, J. Colloid Interface Sci. 83, 230–239 (1981).

    Article  CAS  Google Scholar 

  79. T. Kunitake and Y. Okahata, A totally synthetic bilayer membrane, J. Am. Chem. Soc. 99, 3860–3861 (1977).

    Article  CAS  Google Scholar 

  80. T. Kunitake, Chemistry of synthetic bilayer membranes, J. Macromol. Sci., Chem. A13, 587–602 (1979).

    CAS  Google Scholar 

  81. H. Bader, H. Ringsdorf, and J. Skura, Liposomes from polymerizable glycolipids, Angew. Chem., Int. Ed. Engl. 20, 91–92 (1981).

    Article  Google Scholar 

  82. N. Wagner, K. Dose, H. Koch, and H. Ringsdorf, Incorporation of ATP synthetase into long-term stable liposomes from a polymerizable sulfolipid, FEBS Lett. 132, 313–318 (1981).

    Article  CAS  Google Scholar 

  83. M. Hatada, M. Nishii and K. Hirota, Radiation-induced polymerization of octadecyl acrylate multilayers by electron beam irradiation, Japan Atomic Energy Res. Inst. Repts. 5030, 26–32 (1975); Chem. Abstr. 84, 5557f (1976).

    Google Scholar 

  84. M. Nishii and M. Hatada, Polymerization of vinyl stearate multilayers by electron beam irradiation, Japan Atomic Energy Res. Inst. Repts. 5030, 33–37 (1975); Chem. Abstr. 84, 44718d (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Hupfer, B., Ringsdorf, H. (1985). Polymeric Oriented Monolayers and Multilayers as Model Surfaces. In: Andrade, J.D. (eds) Surface and Interfacial Aspects of Biomedical Polymers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8610-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8610-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8612-4

  • Online ISBN: 978-1-4684-8610-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics