Model Polymers for Probing Surface and Interfacial Phenomena

  • D. E. Gregonis
  • J. D. Andrade


This chapter will review the use of model polymer systems for studying surface and interfacial properties. It is not intended to be all inclusive in regard to the overall chemistry of the systems, or even to review each and every polymer which has been investigated. This chapter is meant to provide a condensed overview of the bulk and surface characteristics of selected systems. Generally these model polymers are systematically prepared in order to change the bulk composition of polymeric material. The bulk composition is then extrapolated to the interface. It must be emphasized that this extrapolation is often not direct. The tendency is for the polymer to minimize its interfacial energies; thus, a polymer cast against a clean (high energy) glass surface may exhibit different surface properties than the same polymer’s air-exposed surface. These effects are more pronounced in block copolymers which may have large domains of different surface properties. A polymer with high glass transition temperature may retain its surface energies for extended periods of time or until annealing. Polymers with their glass transition below room temperature may reorient quite rapidly upon exposure to different environments and may have different groups exposed in an air environment as compared to an aqueous environment. (See Chapter 2.)


Contact Angle Block Copolymer Probe Surface Chain Extender Model Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. K. Sung, D. E. Gregonis, G. A. Russell, and J. D. Andrade, Effect of water and tacticity on the glass transition temperature of poly(2-hydroxyethyl methacrylate), Polymer 19, 1362–1363 (1978).CrossRefGoogle Scholar
  2. 2.
    A. D. Jenkins, Stereochemical definitions and notations relating to polymers, Pure Appl. Chem. 51, 1101–1121 (1979).CrossRefGoogle Scholar
  3. 3.
    J. Brandrup and E. H. Immergut, Polymer Handbook, 2nd ed., Wiley, New York (1975).Google Scholar
  4. 4.
    F. A. Bovey, High Resolution NMR of Macromolecules, Academic Press, New York (1972).Google Scholar
  5. 5.
    F. A. Bovey and G. V. D. Tiers, Polymer NSR spectroscopy, J. Polym. Sci. 44, 173–182 (1960).CrossRefGoogle Scholar
  6. 6.
    D. E. Gregonis, G. A. Russell, J. D. Andrade, and A. C. deVisser, Preparations and properties of stereoregular poly(hydroxyethyl methacrylate) polymers and hydrogels, Polymer 19, 1279–1284 (1978).CrossRefGoogle Scholar
  7. 7.
    H. Yuki and K. Hatada, in: Advances in Polymer Science (H.-J. Cantow, G. Dall’Asta, K. Dusek, J. D. Ferry, H. Fujita, M. Gordon, W. Kern, G. Natta, S. Okamura, C. G. Overberger, T. Saegusa, G. V. Schulz, W. P. Slichter and J. K. Stille, eds.), Vol. 31, pp. 1–45, Springer-Verlag, New York (1979).CrossRefGoogle Scholar
  8. 8.
    P. Vlcek, D. Doskocilova, and J. Trekoval, Anionic copolymerization of methacrylates, J. Polym. Sci. Symp. 42, 231–238 (1973).CrossRefGoogle Scholar
  9. 9.
    H. Kusangi, H. Tadokoro, and Y. Chatani, Double strand helix of isotactic poly(methyl methacrylate), Macromolecules 9, 531–532 (1976).CrossRefGoogle Scholar
  10. 10.
    R. Lovell and A. H. Windel, Structure of noncrystalline isotactic poly(methyl methacrylates). Evidence against double helices, Macromolecules 14, 211–212 (1981).CrossRefGoogle Scholar
  11. 11.
    M. Toyama and T. Ito, Studies of surface wettability of stereospecific poly(methacrylic acid esters), J. Colloid Interface Sci. 49, 139–142 (1974).CrossRefGoogle Scholar
  12. 12.
    D. E. Gregonis, C. M. Chen, and J. D. Andrade, in: Hydrogels for Medical and Related Applications, (J. D. Andrade, ed.), Am. Chem. Soc. Symp. Ser. 31, 88–104 (1976).Google Scholar
  13. 13.
    B. D. Ratner and A. S. Hoffman, in: Adhesion and Adsorption of Polymers (L. H. Lee, ed.), Part B, pp. 691–706, Plenum, New York (1980).Google Scholar
  14. 14.
    O. Wichterle, Hydrogels, Encyclopedia of Polymer Science 15, 273–291 (1971).Google Scholar
  15. 15.
    M. S. Choudhary and I. K. Varma, Copolymerization of 2-hydroxyethyl methacrylate with alkyl methacrylates, Eur. Polym. J. 15, 957–959 (1979).CrossRefGoogle Scholar
  16. 16.
    I. K. Varma and S. Patnaik, Copolymerization of 2-hydroxyethyl methacrylate with alkyl acrylates, Eur. Polym. J. 12, 259–261 (1976).CrossRefGoogle Scholar
  17. 17.
    T. Okano, J. Aoyagi, and I. Shinohara, The wettability and composition of 2-hydroxyethyl methacrylate copolymers. Nippon Kagaku Kaishi 1976(1) 161–170 (1976).CrossRefGoogle Scholar
  18. 18.
    C. Migliaresi, L. Nicodemo, and L. Nicolais, 2-Hydroxyethyl methacrylate/methyl methacrylate copolymers for biomedical use, Society for Biomaterials Abstracts, 8th Annual Meeting, p. 123 (1982).Google Scholar
  19. 19..
    A. Silberberg, in: Hydrogels for Medical and Related Applications (J. D. Andrade, ed.), Am. Chem. Soc. Symp. Ser. 31, 198–205 (1976).Google Scholar
  20. 20.
    J. D. Andrade, R. N. King, D. E. Gregonis, and D. L. Coleman, Surface characterization of poly(hydroxyethyl methacrylate) and related polymers, J. Polym. Sci. Symp. 66, 313–336 (1979).CrossRefGoogle Scholar
  21. 21.
    J. D. Andrade, S. M. Ma, R. N. King, and D. E. Gregonis, Contact angles at the solid-water interface, J. Colloid Interface Sci. 72, 488–494 (1979).CrossRefGoogle Scholar
  22. 22.
    W. C. Hamilton, A technique for the characterization of hydrophilic solid surfaces, J. Colloid Interface Sci. 40, 219–222 (1972).CrossRefGoogle Scholar
  23. 23.
    W. C. Hamilton, Measurement of the polar force contribution to adhesive bonding, J. Colloid Interface Sci. 47, 672–675 (1974).CrossRefGoogle Scholar
  24. 23.
    W. C. Hamilton, Measurement of the polar force contribution to adhesive bonding, J. Colloid Interface Sci. 47, 672–675 (1974).CrossRefGoogle Scholar
  25. 24.
    D. E. Gregonis, R. Hsu, D. E. Buerger, L. M. Smith, and J. D. Andrade, in: Macromolecular Solutions (R. B. Seymour and G. A. Stahl, eds.), pp. 120–133, Pergamon, New York (1982).Google Scholar
  26. 25.
    D. R. Paul and S. Newman, Polymer Blends, Vol. 1, Academic Press, New York (1978).Google Scholar
  27. 26.
    M. F. Sefton and E. W. Merrill, Surface hydroxylation of styrene-butadiene-styrene block copolymers for biomaterials, J. Biomed. Materials Res. 10, 33–45 (1976).CrossRefGoogle Scholar
  28. 27.
    M. F. Sefton and E. W. Merrill, Infrared spectroscopic analysis of complex polymer systems, J. Appl. Polym. Sci. 20, 157–168 (1976).CrossRefGoogle Scholar
  29. 28.
    H. C. Brown, Organic Synthesis via Boranes, J. Wiley, New York (1975).Google Scholar
  30. 29.
    C. P. Pinazzi, A. Menil, J. C. Rabadeax, and A. Pleurdeau, Polyisoprene and polybutadiene derivatives of potential biomedical interest, J. Polym. Sci. Symp. 52, 1–7 (1975).CrossRefGoogle Scholar
  31. 30.
    T. Okano, M. Ikemi, and I. Shinohara, The viscosity behavior of ABA-type block copolymer composed of 2-hydroxyethyl methacrylate and styrene in organic solvent mixture, Polym. J. 10, 477–484 (1978).CrossRefGoogle Scholar
  32. 31.
    T. Okano, M. Katayama, and I. Shinohara, The influence of hydrophilic and hydrophobic domains on water wettability of 2-hydroxyethyl methacrylate-styrene copolymers, J. Appl. Polym. Sci. 22, 369–377 (1978).CrossRefGoogle Scholar
  33. 32.
    E. W. Merrill, Properties of materials affecting the behavior of blood at their interfaces, Ann. N.Y. Acad. Sci. 283, 6–16 (1977).CrossRefGoogle Scholar
  34. 33.
    L. S. Luskin in: Encyclopedia of Industrial Chemical Analysis (F. D. Snell and C. L. Hilton, eds.), Vol. 4, pp. 181–218, Interscience, New York (1967).Google Scholar
  35. 34..
    R. S. Corley, in: Monomers (E. R. S. Blout and H. Mark, eds.), Interscience, New York (1951).Google Scholar
  36. 35.
    C. E. Rehberg and C. H. Fisher, Preparation and properties of n-alkyl acrylates, J. Am. Chem. Soc. 66, 1203–1207 (1944).CrossRefGoogle Scholar
  37. 36..
    D. L. Coleman, In Vitro Blood-Materials Interactions: A Multi-Test Approach, Ph.D. Thesis, Department of Pharmaceutics, University of Utah, August, 1980.Google Scholar
  38. 37.
    H. Determan, Gel Chromatography, Springer-Verlag, New York (1968).Google Scholar
  39. 38.
    S. Shaltiel, Hydrophobic chromatography, Methods Enzymol. 34, 126–140 (1974).CrossRefGoogle Scholar
  40. 39.
    J. L. Ochoa, Hydrophobic (interaction) chromatography, Biochimie 60, 1–15 (1978).CrossRefGoogle Scholar
  41. 40.
    B. H. J. Hofstee and N. F. Otillio, Non-ionic adsorption chromatography of proteins, J. Chromatogr. 159, 57–70 (1978).CrossRefGoogle Scholar
  42. 41.
    T. C. J. Gribnau, C. A. G. van Ekelen, C. Stumm, and G. I. Tesser, Microscopic observations on agarose beads, J. Chromatogr. 132, 519–524 (1977).CrossRefGoogle Scholar
  43. 42.
    J. Rosengren, S. Pahlman, M. Glad, and S. Hjerten, Hydrophobic interaction chromatography on noncharged sepharose derivatives, Biochem. Biophys. Acta 412, 51–61 (1975).Google Scholar
  44. 43.
    A. Noshay and J. E. McGrath, Block Copolymers, Overview and Critical Survey, Academic Press, New York (1977).Google Scholar
  45. 44.
    D. C. Allport and W. H. James, Block Copolymers, Wiley, New York (1973).Google Scholar
  46. 45.
    G. L. Wilkes, T. S. Dziemianowicz, Z. H. Ophir, E. Artz, and R. Wildnauer, Thermally induced time dependence of mechanical properties in biomedical grade polyurethanes, J. Biomed. Materials Res. 13, 189–206 (1979).CrossRefGoogle Scholar
  47. 46.
    K. A. Pigott, in: Kirk Othmer Encycl Chem. Technol (H. Mark, ed.), Vol. 21, pp. 56–106, Interscience, New York (1970).Google Scholar
  48. 47.
    J. M. Buist and H. Gudgeon, Adv. Polyurethane Tech. Wiley, New York (1968).Google Scholar
  49. 48.
    C. S. Schollenberger and K. J. Dinberg, Thermoplastic urethane molecular weight-property relations, J. Elastoplast. 5, 222–251 (1973).Google Scholar
  50. 49.
    C. S. P. Sung, C. B. Hu, and C. S. Wu, Properties of segmented poly(urethane ureas) based on 2,4-toluene diisocyanate, Macromolecules 13, 111–116 (1980).CrossRefGoogle Scholar
  51. 50.
    C. S. P. Sung and C. B. Hu, Orientation studies of segmented polyether poly(urethane urea) elastomers by infrared dichroism, Macromolecules 14, 212–215 (1981).CrossRefGoogle Scholar
  52. 51.
    C. S. P. Sung and N. S. Schnedier, Infrared studies of hydrogen bonding in toluene diisocyanate based polyurethanes, Macromolecules 8, 68–73 (1975).CrossRefGoogle Scholar
  53. 52.
    S. L. Samuels and G. L. Wilkes, Anisotropic superstructure in segmented polyurethanes as measured by photographic light scattering, Polym. Lett. 9, 761–766 (1971).CrossRefGoogle Scholar
  54. 53.
    R. W. Seymour, G. M. Estes, D. S. Huh, and S. L. Cooper, Rheo-optical studies of Polyurethane block polymers, J. Polym. Sci. 10, 1521–1527 (1972).Google Scholar
  55. 54.
    K. Knutson and D. J. Lyman, Morphology of block copolyurethanes. II. FTIR and ESCA techniques for studying surface morphology, Organic Coatings and Plastics Preprints 42, 621–627 (1980).Google Scholar
  56. 55.
    V. S. da Costa, D. Brier-Russell, D. W. Salzman, and E. W. Merrill, ESCA studies of polyurethanes: blood activation in relation to surface composition, J. Colloid Interface Sci. 80, 445–452 (1981).CrossRefGoogle Scholar
  57. 56.
    B. D. Ratner, ESCA and SEM studies on polyurethanes for biomedical applications, Polymer Preprints 21, 152–153 (1980).Google Scholar
  58. 57..
    B. D. Ratner in: Photon, Electron, and Ion Probes of Polymer Structure and Properties (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), Am. Chem. Soc. Symp. Ser. 162, 371–382 (1981).Google Scholar
  59. 58..
    B. D. Ratner in: Physicochemical Aspects of Polymer Surfaces (K. L. Mittal, ed.), Vol. 2, pp. 969–983, Plenum, New York (1983).Google Scholar
  60. 59.
    M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physiochemical characterization and in vivo blood tolerability of cast and extruded biomer, J. Biomed. Materials Res. 17, 1–22 (1981).CrossRefGoogle Scholar
  61. 60..
    K. Knutson and D. J. Lyman in: Biomaterials: Interfacial Phenomena and Applications (S. L. Cooper and N. A. Peppas, eds.), Advan. Chem. Ser. 199, 109–132 (1982).Google Scholar
  62. 61..
    T. Miyamae, S. Mori, and Y. Takeda, Poly-L-glutamic acid surgical sutures, U.S. Patent 3,371,069 (1968).Google Scholar
  63. 62..
    R. V. Peterson, C. G. Anderson, S. M. Fang, D. E. Gregonis, S. W. Kim, J. Feijen, J. M. Anderson, and S. Mitra in: Controlled Release of Bioactive Materials (R. Baker, ed.), pp. 45–60, Academic Press, New York (1980).Google Scholar
  64. 63.
    C. W. Hall, M. Spira, F. Gerow, L. Adams, E. Martin, and S. B. Hardy. Evaluation of artificial skin models: presentation of three clinical cases, Trans. Am. Soc. Art. Int. Org. 16, 12–16 (1970).Google Scholar
  65. 64.
    E. Klein, P. D. May, J. K. Smith, and N. Leger, Permeability of synthetic polypeptide membranes, Biopolymers 10, 647–655 (1971).CrossRefGoogle Scholar
  66. 65.
    F. Fuchs, Uber N-carbonsaure-anhydride, Chem. Ber. 55, 2943 (1922).Google Scholar
  67. 66.
    A. C. Farthing, Synthetic polypeptides, J. Chem. Soc., 3213–3217 (1950).Google Scholar
  68. 67.
    H. R. Kricheldorf, Mechanisms of NCA polymerization, Makromol. Chem. 178, 905–939 (1977).CrossRefGoogle Scholar
  69. 68.
    N. Lupu-Lotan, A. Yaron, A. Berger, and M. Sela, Conformational changes in the nonionizable water soluble synthetic polypeptide poly-N5(3-hydroxypropyl) L-glutamine, Biopolymers 3, 625–655 (1965).CrossRefGoogle Scholar
  70. 69.
    T. Tanaka, T. Mori, K. Ogawa, and R. Tanaka, Heterogeneous network polymers. IX. Poly(L-glutamic acid) crosslinked with polyether diisocyanates, Polymer J. 11, 731–736 (1979).CrossRefGoogle Scholar
  71. 70.
    T. Sugie, J. M. Anderson, and P. A. Hiltner, Structure and deformation of a crosslinked poly(α-amino acid), Polymer Preprints 20, 439–441 (1979).Google Scholar
  72. 71.
    T. Sugie and A. Hiltner, Structure and deformation of a crosslinked poly(α-amino acid), J. Macromol Sci., Phys. B17, 769–785 (1980).Google Scholar
  73. 72.
    D. D. Solomon, D. H. Cowan, J. M. Anderson, and A. G. Walton, Platelet interaction with synthetic copolypeptide films, J. Biomed. Materials Res. 13, 765–782 (1980).CrossRefGoogle Scholar
  74. 73..
    D. D. Solomon, D. H. Cowan, and A. G. Walton in: Colloid and Interface Science, Vol. 5 (M. Kerker, ed.), pp. 1–21, Academic Press, New York (1976).Google Scholar
  75. 74.
    G. Odian, Principles of Polymerization, McGraw-Hill, New York (1970).Google Scholar
  76. 75.
    E. H. Riddle, Monomeric Acrylic Esters, Reinhold, New York (1954).Google Scholar
  77. 76.
    P. Pino and R. Mulhaupt, Stereospecific polymerization of propylene: an outlook 25 years after its discovery, Angew Chem., Int. Ed. Engl. 19, 857–875 (1980).CrossRefGoogle Scholar
  78. 77.
    S. L. Aggarwal, Block Copolymers, Plenum, New York (1970).Google Scholar
  79. 78.
    T. Okano, M. Shimada, I. Shinohara, K. Kataoka, T. Akaike, and Y. Sakurai, in: Biomaterials 1980, (G. D. Winters, D. F. Gibbons, and H. Plenk, Jr., eds.), pp. 445–450, John Wiley, New York (1982).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • D. E. Gregonis
    • 1
  • J. D. Andrade
    • 1
  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations