Advertisement

Polymer Surface Dynamics

  • J. D. Andrade
  • D. E. Gregonis
  • L. M. Smith

Abstract

Classical surface chemistry assumes that solid surfaces are rigid, immobile, and at equilibrium. These assumptions allow one to probe adsorption and wetting or contact angle processes purely from the point of view of the liquid phase, because one assumes that the solid phase does not in any way respond, reorient, or otherwise change in the different liquid environments. Although such assumptions may be partially correct for truly rigid solids, they are generally inappropriate for polymers (see also Chapter 7).

Keywords

Contact Angle Glass Transition Glass Transition Temperature Methyl Methacrylate Polymer Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hedvig, Dielectric Spectroscopy of Polymers, Wiley, New York (1977).Google Scholar
  2. 2.
    D. J. Williams, Polymer Science and Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1971).Google Scholar
  3. 3.
    J. D. Andrade, D. E. Gregonis, and L. M. Smith, in: Physicochemical Aspects of Polymer Surfaces (K. L. Mittal, ed.), pp. 911–922, Plenum Press, New York (1983).Google Scholar
  4. 4.
    E. Nyilas and R. S. Ward, Jr., Development of blood compatible elastomers. V., J. Biomed. Materials Res. Symp. 8, 69–84 (1977); also Proc. 23rd Ann. Conf Eng. Med. Biol. 12, 147–148 (1970).Google Scholar
  5. 5.
    F. J. Holly and M. F. Refojo, Wettability of hydrogels, J. Biomed. Materials Res. 9, 315–326 (1975).CrossRefGoogle Scholar
  6. 6.
    E. W. Merrill, Behavior of blood at surfaces, Ann. N.Y. Acad. Sci. 283, 6–16 (1977).CrossRefGoogle Scholar
  7. 7.
    S. A. Barenberg, J. S. Schultz, J. M. Anderson, and P. H. Geil, Hemocompatibility: macromolecular motions and order of the polymer interface, Trans. Am. Soc. Artificial Internal Organs 25, 159–162 (1979).CrossRefGoogle Scholar
  8. 8.
    S. A. Barenberg, J. M. Anderson, and K. A. Mauritz, Thrombogenesis: an epitaxial phenomena, J. Biomed. Materials Res. 15, 231–245 (1981).CrossRefGoogle Scholar
  9. 9.
    W. M. Reichert, R. E. Filisko, and S. A. Barenberg, Polyphosphazenes: effect of molecular motions on thrombogenesis, J: Biomed. Materials Res. 16, 301–312 (1982).CrossRefGoogle Scholar
  10. 10.
    Y. Sakurai, T. Akaike, K. Kataoka, and T. Okano, in: Biomedical Polymers (E. P. Goldberg and A. Nakajima, eds.), pp. 335–379, Academic Press, New York (1980).Google Scholar
  11. 11.
    D. Brier-Russell, E. W. Salzman, J. Lindon, R. Handin, E. C. Merrill, A. K. Dincer, and J.-S. Wu, Interaction of blood with model surfaces J. Colloid Interface Sci. 81, 311–318 (1981).CrossRefGoogle Scholar
  12. 12.
    D. L. Coleman, In Vitro Blood-Materials Interactions: A Multi-Test Approach, PhD. Thesis, University of Utah, August, 1980.Google Scholar
  13. 13.
    A. M. North, in: Molecular Behaviour and the Development of Polymeric Materials (A. Ledwith and A. M. North, eds.), pp. 368–403, Chapman and Hall, London (1974).Google Scholar
  14. 14.
    C. D. Armeniades and E. Baer, in: Introduction to Polymer Science and Technology (H. S. Kaufman, ed.), pp. 239–299, John Wiley and Sons, New York (1977).Google Scholar
  15. 15.
    M. J. Richardson and N. G. Savill, What information will DSC give on glassy polymers?, Brit. Polym. J. 11, 123–129 (1979).CrossRefGoogle Scholar
  16. 16.
    R. A. Pethrick, Molecular motion in semi-flexible macromolecules, Sci. Prog. Oxf. 6, 571–592 (1980).Google Scholar
  17. 17.
    J. M. G. Cowie, Relaxation processes in the glassy state: molecular aspects, J. Macromol. Sci. Phys. B18, 569–623 (1980).Google Scholar
  18. 18.
    J. Brandrup and E. H. Immergut, eds. Polymer Handbook, 2nd Edition, John Wiley and Sons, New York (1975).Google Scholar
  19. 19.
    L. R. Brostrom, D. L. Coleman, D. E. Gregonis, and J. D. Andrade, Thermal analysis of polymethacrylates, Makromol. Chem., Rapid Comm. 1, 341–343 (1980).CrossRefGoogle Scholar
  20. 20.
    E. A. Turi, Thermal Characterization of Polymeric Materials, Omnitherm Corp., Arlington Heights, Illinois (1982).Google Scholar
  21. 21.
    J. K. Gillham, S. J. Standicki, and Y. Hazony, Low-frequency thermomechanical spectrometry of polymeric materials: tactic poly(methyl methacrylates), J. Appl. Polym. Sci. 21,401–424 (1977).CrossRefGoogle Scholar
  22. 22.
    N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids, John Wiley and Sons, New York (1967).Google Scholar
  23. 23.
    A. E. Woodward and F. A. Bovey, eds., Polymer Characterization by ESR and NMR, Am. Chem. Soc. Symp. Series 142 (1980).Google Scholar
  24. 24.
    J.-M. Braun and J. E. Guillet, Study of polymers by inverse gas chromatography, Adv. Polym. Sci. 21, 107–145 (1976).CrossRefGoogle Scholar
  25. 25.
    J.-M. Braun and J. E. Guillet, Studies of polystyrene in the region of the glass transition temperature by inverse gas chromatography, Macromolecules 8, 882–888 (1975).CrossRefGoogle Scholar
  26. 26.
    Z. Kessaissia, E. Papirer, and J.-B. Donnet, Molecular transitions of alkyl chains grafted onto silicas observed by gas chromatography, J. Colloid Interface Sci. 79, 257–263 (1981).CrossRefGoogle Scholar
  27. 27.
    H. P. Schreiber and M. D. Croucher, Surface characteristics of solvent-cast polymers, J. Appl. Polym. Sci. 25, 1961–1968 (1980).CrossRefGoogle Scholar
  28. 28.
    Y. S. Lipatov and L. M. Sergeeva, Adsorption of Polymers, Chapter 4, John Wiley and Sons, New York (1974).Google Scholar
  29. 29.
    G. J. Howard and R. A. Shanks, Influence of filler particles on the mobility of polymer molecules, J. Macromol. Sci, Chem. A17, 287–295 (1982).Google Scholar
  30. 30.
    A. Yim, R. S. Chahal, and L. E. St. Pierre, Effect of polymer-filler interaction energy on the Tg of filled polymers, J. Colloid Interface Sci. 43, 583–590 (1973).CrossRefGoogle Scholar
  31. 31.
    P. Peyser and W. D. Bascom, Effect of filler and cooling rate on the glass transition of polymers, J. Macromol. Sci-Phys. B13, 597–610 (1977).CrossRefGoogle Scholar
  32. 32.
    J. F. M. Pennings and B. Bosman, Relaxation of the surface energy of solid polymers, Colloid Polym. Sci. 257, 720–724 (1979).CrossRefGoogle Scholar
  33. 33.
    A. Carre and H. P. Schreiber, Solvent history effects and multi-valued surface properties of PMMA coatings, Proc. FATIPEC Congress, Belgium, May, 1982.Google Scholar
  34. 34.
    H. Yasuda, A. K. Sharma, and T. Yasuda, Effect of orientation and mobility of polymer molecules at surfaces on contact angle and its hysteresis, J. Polym. Sci., Polym. Physics 19, 1285–1291 (1981).CrossRefGoogle Scholar
  35. 35.
    N. Beredijick, in: Newer Methods of Polymer Characterization (B. Ke, ed.), Interscience, New York (1964).Google Scholar
  36. 36.
    H. W. Fox, P. W. Taylor, W. A. Zisman, Polyorganosiloxanes: surface active properties, Ind. Eng. Chem. 39, 1401–1409 (1947).CrossRefGoogle Scholar
  37. 37.
    M. J. Owen, The surface activity of silicones, Ind. Eng. Chem., Prod. Res. Develop. 19, 97–103 (1980).CrossRefGoogle Scholar
  38. 38.
    A. Okawa, B.Sc. Thesis, Department of Materials Science, University of Utah, June, 1983.Google Scholar
  39. 39.
    K. Ohara, Relationship between frictional electrification and molecular motion of polymers, J. Electrostatics 9, 107–115 (1980).CrossRefGoogle Scholar
  40. 40.
    J. Klein and P. Luckham, Forces between two adsorbed PEO layers immersed in a good aqueous solvent, Nature 300, 429–430 (1982).CrossRefGoogle Scholar
  41. 41.
    A. Baszkin, N. Nishino, and L. Ter-Minassian-Saraga, Solid-liquid adhesion of oxidized polyethylene films, J. Colloid Interface Sci. 54, 317–322 (1976).CrossRefGoogle Scholar
  42. 42.
    H. Morawetz, Fluorescence studies of conformational mobility, Pure Appl. Chem. 52, 277–284 (1980).CrossRefGoogle Scholar
  43. 43.
    K. C. Rusch, Time-temperature superposition and relaxation behavior in polymer glasses, J. Macromol. Sci. Phys. B12, 179–204 (1968).Google Scholar
  44. 44.
    L.-H. Lee, Surface wettability and glass temperatures, J. Appl. Polym. Sci. 12, 719–730 (1968).CrossRefGoogle Scholar
  45. 45.
    S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nichiumi, Interaction between blood components and hydrogels with poly(oxyethylene) chain, Polymer Preprints 24, 67–68 (1983).Google Scholar
  46. 46.
    T. Matsuda and T. Akutsu, Blood/materials interactions of hydrophobic and hydrophilic segmented polyurethanes, Organic Coatings and Applied Polymer Science Preprints 48, 647–648 (1983).Google Scholar
  47. 47.
    T. J. McCarthy, Polymer surface modification by diffusion of functional groups, Organic Coatings and Applied Polymer Science Preprints 48, 520–522 (1983).Google Scholar
  48. 48.
    R. S. Ward, Jr., Development of thermoplastics, Organic Coatings and Plastics Preprints 42, 227–228 (1980).Google Scholar
  49. 49.
    D. S. Everhart and C. N. Reilley, Functional group mobility, Surface and Interface Analysis 3, 126–133 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • J. D. Andrade
    • 1
  • D. E. Gregonis
    • 1
  • L. M. Smith
    • 1
  1. 1.Department of BioengineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations