Interfacial Tensions at Amorphous High Polymer-Water Interfaces: Theory

  • Mu Shik Jhon
  • Youngie Oh


The immiscibility of polymers is regarded as rather a rule than an exception in contrast with most small-molecule liquids. The interaction between unlike polymer constituent groups is less energetically favorable than the interaction between like ones in a relative sense. Both types of interactions are strongly attractive, as manifested by the fact that polymers form adhesive, highly incompressible phases. While the unfavorable interaction between unlike polymers tends to drive the two phases apart, an adhesive force acts strongly to prevent an actual gap from developing. The demixed polymer liquids thus form multiphase structures with stable but energetically unfavorable interfaces. Considerable attention has been given to interfacial properties of polymer melts, especially the interfacial tension, due to their importance in many technologies through their roles in the processes of polymer blends, wettability, and adhesion. Provided that one of the two demixed polymer phases is replaced by a water phase, a polymer-water interface will be formed. The polymer-water interfacial tension plays an important role in understanding interfacial interactions between the physiological environment and the surface of polymer materials. The polymer-water interface can be, however, investigated as an extension of the polymer-polymer interfacial system, and the interfacial tension of polymers is closely related to the surface tension, i.e., the excess free energy of polymer surface being exposed to atmosphere.


Surface Tension Interfacial Tension Polymer Liquid Cohesive Energy Density Critical Surface Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Wu, Interfacial and surface tensions of polymers, J. Macromol. Sci, Revs. Macromol. Chem. C10, 1–73 (1974).Google Scholar
  2. 2.
    S. Wu, in: Polymer Blends (D. R. Paul and S. Newman, eds.), Vol. 1, pp. 243–293, Academic Press, New York (1978).Google Scholar
  3. 3.
    G. L. Gaines, Jr., Surface and interfacial tension of polymer liquids, Polym. Eng. Sci., 12, 1–11 (1972).Google Scholar
  4. 4.
    H. L. Frisch, G. L. Gaines, Jr., and H. Schonhorn, in: Treatise on Solid State Chemistry (N. B. Hannay, ed.), Vol. 6B, pp. 343–412, Plenum Press, New York (1976).Google Scholar
  5. 5.
    T. Hata, Polym. Sci. Technol. 12A, 15–41 (1980).Google Scholar
  6. 6.
    T. W. Richards and L. B. Coombs, The surface tensions of water, methyl, ethyl, and isobutyl alcohols, ethyl butyrate, benzene, and toluene, J. Am. Chem. Soc. 37, 1656–1676 (1915).Google Scholar
  7. 7.
    W. D. Harkins and E. C. Humphery, The drop weight method for the determination of surface tension, J. Am. Chem. Soc. 48, 228–236 (1916).Google Scholar
  8. 8.
    O. R. Quayle, The parachors of organic compounds, Chem. Rev. 53, 439–589 (1953).Google Scholar
  9. 9.
    I. D. Sokolova and N. K. Voskresenskaya, Russ. Chem. Rev. 35, 500–517 (1966).Google Scholar
  10. 10.
    H. L. Frisch and Z. W. Salsburg, Simple Dense Fluids, Academic Press, New York (1968).Google Scholar
  11. 11.
    A. F. Gallaugher and H. Hibbert, Studies on reactions relating to carbohydrates and polysaccharides, J. Am. Chem. Soc. 59, 2514–2521 (1939).Google Scholar
  12. 12.
    J. F. Padday, in: Surface and Colloid Science, (E. Matijevic, ed.), Vol. 1, pp. 101–251, Wiley-Interscience, New York (1969).Google Scholar
  13. 13.
    A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed., Wiley-Interscience, New York (1976).Google Scholar
  14. 14.
    R. J. Roe, V. L. Bachetta, and P. M. G. Wong, Refinement of pendant drop method for the measurement of surface tension of viscous liquid, J. Phys. Chem. 71, 4190–4193 (1967).Google Scholar
  15. 15.
    R. J. Roe, Surface tension of polymer liquids, J. Phys. Chem. 72, 2013–2017 (1968).Google Scholar
  16. 16.
    S. Wu, Surface and interfacial tensions of polymer melts, J. Colloid Interface Sci. 31, 153–161 (1969).Google Scholar
  17. 17.
    T. Sakai, Surface tension of polyethylene melt, Polymer 6, 659–661 (1965).Google Scholar
  18. 18.
    T. Hata, Hyomen 6, 281–2898 (1968).Google Scholar
  19. 19.
    H. M. Princen, I. Y. Z. Zia, and S. G. Mason, Measurement of interfacial tension from the shape of a rotating drop, J. Colloid Interface Sci. 23, 99–107 (1967).Google Scholar
  20. 20.
    H. T. Patterson, K. H. Hu, and T. H. Grindstaff, Measurement of interfacial and surface tensions in polymer systems, J. Polym. Sci., C 34, 31–43 (1971).Google Scholar
  21. 21.
    W. A. Zisman, Adv. Chem. Ser. 43, 1–51 (1964).Google Scholar
  22. 22.
    J. J. Bikerman, Sliding of drops from surfaces of different roughness, J. Colloid Sci. 5, 349–359 (1950).Google Scholar
  23. 23.
    E. Baer and F. McLaughlin, The determination of surface properties of polymers from liquid drop stability on an inclined plane, J. Appl. Polym. Sci. 5, 240–245 (1961).Google Scholar
  24. 24.
    W. Funke, G. E. H. Hellweg, and A. W. Neumann, Angew. Makromol. Chem. 8, 185–193 (1969).Google Scholar
  25. 25.
    H. W. Fox and W. A. Zizman, The spreading of liquids on low energy surfaces, J. Colloid Sci. 7, 605–609 (1979).Google Scholar
  26. 26.
    S. Wu, Surface tension of solids: an equation of state analysis, J. Colloid Interface Sci. 71, 605–609 (1979).Google Scholar
  27. 27.
    E. G. Shafrin, in: Polymer Handbook, 2nd ed. (J. Brandrup et al., eds.), pp. 111–221, Wiley-Interscience, New York (1975).Google Scholar
  28. 28.
    R. J. Roe, Interfacial tension between polymer liquids, J. Colloid Interface Sci. 31, 228–235 (1969).Google Scholar
  29. 29.
    S. Wu, Surface and interfacial tensions of polymer melts, J. Phys. Chem. 74, 632–638 (1970).Google Scholar
  30. 30.
    S. Wu, Calculation of interfacial tension in polymer systems, J. Polym. Sci., C 34, 19–30 (1971).Google Scholar
  31. 31.
    D. B. MacLeod, On a relation between surface tension and density, Trans. Faraday Soc. 19, 38 (1923).Google Scholar
  32. 32.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York (1964).Google Scholar
  33. 33.
    C. W. Stewart and C. A. von Frankenburg, Significant structure theory of the surface tension of polyethylene, J. Polym. Sci., A-2 6, 1686–1688 (1968).Google Scholar
  34. 34.
    Y. Oh and M. S. Jhon, Theoretical estimation of surface tension of amorphous high polymers, J. Colloid Interface Sci. 73, 467–474 (1980).Google Scholar
  35. 35.
    T. G. Fox and P. J. Flory, Second-order transition temperatures and related properties of polystyrene, J. Appl. Phys. 21, 581–591 (1950).Google Scholar
  36. 36.
    T. G. Fox and P. J. Flory, The glass temperature and related properties of polystyrene, J. Polym. Sci. 14, 315–319 (1954).Google Scholar
  37. 37.
    T. G. Fox and S. Loshaek, Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers, J. Polym. Sci. 15, 371–390 (1955).Google Scholar
  38. 38.
    K. Ueberreiter and G. Kanig, Z. Naturforsch. A 6, 551–559 (1951).Google Scholar
  39. 39.
    R. F. Boyer, The relation of transition temperatures to chemical structure in high polymers, Rubber Chem. Technol. 36, 1303–1421 (1963).Google Scholar
  40. 40.
    J. R. Martin, J. F. Johnson, and A. R. Cooper, J. Macromol. Sci., Revs. Macromol. Chem. C8, 57–199 (1972).Google Scholar
  41. 41.
    M. C. Phillips and A. C. Riddiford, The specific free surface energy of parafinic solids, J. Colloid Interface Sci. 22, 149–157 (1966).Google Scholar
  42. 42.
    R. H. Dettre and R. E. Johnson, Jr., Surface tension, critical surface tension, and temperature coefficient of surface tension of polytetrafluoroethylene, J. Phys. Chem. 71, 1529–1531 (1967).Google Scholar
  43. 43.
    T. Hata, Kobunshi 17, 594–605 (1968).Google Scholar
  44. 44.
    H. Edwards, Surface tensions of liquid polyisobutylenes, J. Appl. Polym. Sci. 12, 2213–2224 (1968).Google Scholar
  45. 45.
    D. G. LeGrand and G. L. Gaines Jr., Immiscibility and interfacial tension between polymer liquids, J. Colloid Interface Sci. 50, 272–279 (1975).Google Scholar
  46. 46.
    G. L. Gaines, Jr. and G. L. Gaines III, The interfacial tension between n-alkanes and poly(ethylene glycols), J. Colloid Interface Sci. 63, 394–398 (1978).Google Scholar
  47. 47.
    G. D. LeGrand and G. L. Gaines Jr., The molecular weight dependence of polymer surface tensions, J. Colloid Interface Sci. 31, 162–167 (1969).Google Scholar
  48. 48.
    D. G. LeGrand and G. L. Gaines Jr., Surface tension of homologous series of liquids, J. Colloid Interface Sci. 42, 181–184 (1973).Google Scholar
  49. 49.
    H. W. Starkweather, SPE Trans. 5, 506 (1965).Google Scholar
  50. 50.
    G. W. Bender, D. G. LeGrand, and G. L. Gaines Jr., Molecular weight dependence of surface tension and refractive index for some poly(ethylene oxide) derivatives, Macromolecules 2, 681–682 (1969).Google Scholar
  51. 51.
    A. K. Rastogi and L. E. St. Pierre, Interfacial phenomena in macromolecular systems, J. Colloid Interface Sci. 35, 16–22 (1971).Google Scholar
  52. 52.
    K. S. Slow and D. Patterson, The prediction of surface tensions of liquid polymers, Macromolecules 4, 26–30 (1971).Google Scholar
  53. 53.
    N. G. Gaylord, Adv. Chem. Ser. 142, 76–84 (1975).Google Scholar
  54. 54.
    S. Wu, Polar and nonpolar interactions in adhesion, J. Adhesion 5, 39–55 (1973).Google Scholar
  55. 55.
    J. G. Kirkwood and F. P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17, 338–343 (1949).Google Scholar
  56. 56.
    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, J. Chem. Phys. 28, 258–267 (1958).Google Scholar
  57. 57.
    T. S. Ree, T. Ree, and H. Eyring, Significant structure theory of surface tension, J. Chem. Phys. 41, 524–530 (1964).Google Scholar
  58. 58.
    I. Prigogine and L. Saraga, J. Chim. Phys. 49, 399–407 (1952).Google Scholar
  59. 59.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca (1953).Google Scholar
  60. 60.
    I. Prigogine, N. Trappeniers, and V. Mathot, Disc. Faraday Soc. 15, 93–107 (1953).Google Scholar
  61. 61.
    R. J. Roe, Theory of the interface between polymers and polymer solutions, J. Chem. Phys. 62, 490–499 (1975).Google Scholar
  62. 62.
    E. Helfand, Theory of inhomogeneous polymers, J. Chem. Phys. 63, 2192–2198 (1975).Google Scholar
  63. 63.
    I. Prigogine, A. Bellemans, and C. Naar-Colin, Theorem of corresponding states for polymers, J. Chem. Phys. 26, 751–755 (1957).Google Scholar
  64. 64.
    R. Simha and A. J. Havlik, On the equation of state of oligomer and polymer liquids, J. Am. Chem. Soc. 86, 197–204 (1964).Google Scholar
  65. 65.
    V. S. Nanda, R. Simha, and T. Somcynsky, Principle of corresponding states and equation of state of polymer liquids and glasses, J. Polym. Sci., C 12, 277–295 (1966).Google Scholar
  66. 66.
    R. Simha and T. Somcynsky, On the statistical thermodynamics of spherical and chain molecule fluids, Macromolcules 2, 342–350 (1969).Google Scholar
  67. 67.
    V. S. Nanda and R. Simha, Equation of state and related properties of polymer and oligomer liquids, J. Phys. Chem. 68, 3158–3163 (1964).Google Scholar
  68. 68.
    R. J. Roe, Hole theory of surface tension of polymer liquids, Proc. Nat. Acad. Sci. USA, 56, 819–824 (1966).Google Scholar
  69. 69.
    T. Nose, A hole theory of polymer liquids and glasses, Polym. J. 3, 1–11 (1972).Google Scholar
  70. 70.
    D. Patterson and A. K. Rastogi, The surface tension of polyatomic liquids and the principle of corresponding states, J. Phys. Chem. 74, 1067–1071 (1970).Google Scholar
  71. 71.
    C. I. Poser and I. C. Sanchez, Surface tension theory of pure liquids and polymer melts, J. Colloid Interface Sci. 69, 539–548 (1979).Google Scholar
  72. 72.
    I. C. Sanchez and R. H. Lacombe, An elementary molecular theory of classical fluids, pure fluids, J. Phys. Chem. 80, 2352–2362 (1976).Google Scholar
  73. 73.
    C. I. Poser and I. C. Sanchez, Interfacial tension theory of low and high molecular weight liquid mixtures, Macromolecules 14, 361–370 (1981).Google Scholar
  74. 74.
    H. Eyring and M. S. Jhon, Significant Liquid Structures, Wiley, New York (1969).Google Scholar
  75. 75.
    M. S. Jhon and H. Eyring, in: Theoretical Chemistry: Advances and Perspectives, Vol. 3, pp. 55–141, Academic Press, New York (1978).Google Scholar
  76. 76.
    S. M. Ma, H. Eyring, and M. S. Jhon, The significant structure theory applied to amorphous and crystalline polyethylene, Proc. Nat. Acad. Sci. USA 71, 3096–3100 (1974).Google Scholar
  77. 77.
    J. S. King, Neutron scattering from polymers, J. Macromol. Sci., Phys. B12, 13–25 (1976).Google Scholar
  78. 78.
    H. Benoit, Determination of polymer chain conformation in amorphous polymers, J. Macromol. Sci., Phys. B12, 27–40 (1976).Google Scholar
  79. 79.
    E. W. Fischer, J. H. Wendorff, M. Dettenmaier, and I. Voigt-Martin, Chain conformation and structure in amorphous polymers as revealed by X-ray neutron, light, and electron scattering, J. Macromol. Sci., Phys. B12, 41–59 (1976).Google Scholar
  80. 80.
    G. D. Patterson, Light scattering and the local structure of amorphous polymers, J. Macromol. Sci., Phys. B12, 61–74 (1967).Google Scholar
  81. 81.
    G. D. Wignall, D. G. H. Ballard, and J. Schelten, Chain conformation in molten and solid polystyrene and polyethylene by low angle neutron scattering, J. Macromol. Sci., Phys. B12, 75–98 (1976).Google Scholar
  82. 82.
    B. W. Davis, Estimation of surface free energies of polymeric materials, J. Colloid Interface Sci. 59, 420–428 (1977).Google Scholar
  83. 83.
    D. W. Van Krevelen, Properties of Polymers, Elsevier, New York (1972).Google Scholar
  84. 84.
    Y. Oh, J. D. Andrade, and M. S. Jhon, Theoretical estimation of interfacial tension between molten polymers, J. Korean Chem. Soc. 23, 210–216 (1979).Google Scholar
  85. 85.
    L. A. Girifalco and R. J. Good, A theory for the estimation of surface and interfacial energies, J. Phys. Chem. 61, 904–909 (1957).Google Scholar
  86. 86.
    H. Reiss, H. L. Frisch, and J. L. Lebowitz, Statistical mechanics of rigid spheres, J. Chem. Phys. 31, 369–380 (1950).Google Scholar
  87. 87.
    H. Reiss, H. L. Frisch, E. Helfand, and J. L. Lebowitz, Aspects of the statistical thermodynamics of real fluids, J. Chem. Phys. 32, 119–124 (1960).Google Scholar
  88. 88.
    H. Schonborn, Theoretical relationship between surface tension and cohesive energy density, J. Chem. Phys. 43, 2041–2043 (1965).Google Scholar
  89. 89.
    J. H. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes, Reinhold, New York (1950).Google Scholar
  90. 90.
    E. Helfand and Y. Tagami, Theory of the interface between immiscible polymers, J. Chem. Phys. 56, 3592–3601 (1972).Google Scholar
  91. 91.
    E. Helfand and A. M. Sapse, Theory of unsymmetric polymer-polymer interfaces, J. Chem. Phys. 62, 1327–1331 (1975).Google Scholar
  92. 92.
    H. W. Kammer, Surface and interfacial tension of polymer melts, Z.Phys. Chemie, Leipzig, 258, 1149–1161 (1977).Google Scholar
  93. 93.
    E. A. Guggenheim, Trans. Faraday Soc. 36, 1149–1161 (1977).Google Scholar
  94. 94.
    H. W. Kammer, Z. phys. Chemie, Leipzig, 261, 519–528 (1980).Google Scholar
  95. 95.
    F. M. Fowkes, Determination of interfacial tensions, contact angles, and dispersion forces in surfaces, J. Phys. Chem. 66, 381 (1962).Google Scholar
  96. 96.
    F. J. Fowkes, in: Chemistry and Physics of Interface (D. E. Gushee, ed.), Vol. 2, pp. 153–167, Am. Chem. Soc. Pub., Washington, D.C. (1971).Google Scholar
  97. 97.
    A. Vrij, Equation for the interfacial tension between demixed polymer solutions, J. Polym. Sci., A-2 6, 1919–1932 (1968).Google Scholar
  98. 98.
    A. Vrig and G. J. Roebersen, Inhomogeneous polymer solutions, J. Polym. Sci., Polym. Phys. Ed. 15, 109–125 (1977).Google Scholar
  99. 99.
    T. Nose, Theory of liquid-liquid interface of polymer systems, Polym. J. 8, 96–113 (1976).Google Scholar
  100. 100.
    P. Debye, J. Chem. Soc. 31, 680–687 (1959).Google Scholar
  101. 101.
    R. J. Good, Surface entropy and surface orientation of polar liquids, J. Phys. Chem. 61, 810–813 (1957).Google Scholar
  102. 102.
    F. H. Stillinger and A. Ben-Nairn, Liquid-vapor interface potential for water, J. Chem. Phys. 47, 4431–4437 (1967).Google Scholar
  103. 103.
    C. A. Croxton, Statistical Mechanics of Liquid Surface, Wiley, New York (1980).Google Scholar
  104. 104.
    N. H. Fletcher, Surface structure of water and ice, Phil. Mag. 7, 255–269 (1962).Google Scholar
  105. 105.
    M. S. Jhon, E. R. Van Artsdalen, J. Grosh, and H. Eyring, Further applications of the domain theory of liquid water, J. Chem. Phys. 47, 2231–2234 (1967).Google Scholar
  106. 106.
    S. Chang, T. Ree, H. Eyring, and L. Matzner, in: Progress in International Research on Thermodynamic and Transport Properties (J. F. Masi and D. H. Tsai, eds.), pp. 88–92, Academic Press, New York (1962).Google Scholar
  107. 107.
    H. T. Davis, Statistical mechanics of interfacial properties of polyatomic fluids, J. Chem. Phys. 62, 3412–3415 (1975).Google Scholar
  108. 108.
    R. L. Fulton, Contributions of long range polarization fluctuations to the surface tension of liquids, J. Chem. Phys. 64, 1857–1858 (1976).Google Scholar
  109. 109.
    W. Drost-Hansen, in: Chemistry and Physics of Interface (D. E. Gushee, ed.), Vol. 2, pp. 204–241, Am. Chem. Soc. Pub., Washington, D.C. (1971).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Mu Shik Jhon
    • 1
  • Youngie Oh
    • 1
  1. 1.Department of ChemistryKorea Advanced Institute of Science and TechnologySeoulKorea

Personalised recommendations