Graft Copolymer and Block Copolymer Surfaces

  • Buddy D. Ratner


Homopolymers and random copolymers are relatively homogeneous in composition throughout their bulk. At the outermost molecular layer of such materials, the surface chemistry might differ substantially from the average bulk chemistry due to orientation effects, oxidation, or contamination. Graft copolymers and block copolymers, on the other hand, often demonstrate large compositional differences between surface and bulk and these differences can be observed over many molecular layers extending from the surface into the bulk (see Figure 1). This review article will concentrate on the nature of the differences between the bulk and surface of graft and block copolymers and on methods which can be used to explore the surfaces of such systems.


Block Copolymer Graft Copolymer Scanning Electron Micro Segmented Polyurethane Tetramethylene Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. R. M. Gallot, in: Advances in Polymer Science (H. J. Cantow, G. Dall’Asta, K. Dusek, J. D. Ferry, H. Fujita, M. Gordon, W. Kern, G. Natta, S. Okamura, C. G. Overberger, T. Saegusa, G. V. Schulz, W. P. Slichter, and J. K. Stille, eds.), Vol. 29, pp. 85–156, Springer-Verlag, Berlin (1978).Google Scholar
  2. 2.
    A. Noshay and J. E. McGrath, Block CopolymersOverview and Critical Survey, Academic Press, New York (1977).Google Scholar
  3. 3.
    H. A. J. Battaerd and G. W. Tregear, Graft Copolymers, Interscience Publishers, New York (1967).Google Scholar
  4. 4.
    N. R. Legge, G. Holden, S. Davison, and E. DeLaMare, in: Applied Polymer Science (J. K. Craver and R. W. Tess, eds.), pp. 394–429, Organic Coatings and Plastics Chemistry Division of the American Chemical Society, Washington, D.C. (1975).Google Scholar
  5. 5.
    G. M. Estes, S. L. Cooper, and A. V. Tobolsky, Block polymers and related heterophase elastomers, J. Macromol. Sci., Revs. Macromol. Chem. C4, 313–366 (1970).CrossRefGoogle Scholar
  6. 6.
    V. Stannett, Grafting, Radiat. Phys. Chem. 18, 215–222 (1981).Google Scholar
  7. 7.
    S. L. Cooper and G. M. Estes (eds.), Multiphase Polymers, ACS Advances in Chemistry Series, American Chemical Society, Washington, D.C. (1979).Google Scholar
  8. 8.
    S. Yamakawa, Surface modification of polyethylene by radiation-induced grafting for adhesive bonding. I. Relationship between adhesive bond strength and surface composition, J. Appl. Polym. Sci. 20, 3057–3072 (1976).CrossRefGoogle Scholar
  9. 9.
    D. Lodesova, A. Pikier, M. Foldesova, and J. Tolgyessy, Contribution to the radiation-induced grafting of acrylonitrile and glycolmethacrylate to polypropylene, Radiochem. Radioanal. Lett. 32, 327–336 (1978).Google Scholar
  10. 10.
    S. Tazuke and H. Kimura, Surface photografting, 2. Modification of polypropylene film surface by graft polymerization of acrylamide, Makromol. Chem. 179, 2603–2612 (1978).CrossRefGoogle Scholar
  11. 11.
    Y. Ikada, H. Iwata, F. Horlii, T. Matsunaga, M. Taniguchi, M. Suzuki, W. Taki, S. Yamagata, Y. Yonekawa, and H. Handa, Blood compatibility of hydrophilic polymers, J. Biomed. Materials Res. 15, 697–718 (1981).CrossRefGoogle Scholar
  12. 12.
    S. Yamakawa and F. Yamamoto, Surface grafting of polyethylene by mutual irradiation in methyl acrylate vapor. III. Quantitative surface analysis by x-ray photoelectron spectroscopy, J. Polym. Sci., Polym. Phys. Ed. 17, 1581–1590 (1979).CrossRefGoogle Scholar
  13. 13.
    B. D. Ratner, Characterization of graft polymers for biomedical applications, J. Biomed. Materials Res. 14, 665–687 (1980).CrossRefGoogle Scholar
  14. 14.
    Y. Ikada, in: Advances in Polymer Science (H. J. Cantow, G. Dall’Asta, K. Dusek, J. D. Ferry, H. Fujita, M. Gordon, W. Kern, G. Natta, S. Okamura, C. G. Overberger, T. Saegusa, G. V. Schultz, W. P. Slichter, and J. K. Stille, eds.), Vol. 29, pp. 47–84, Springer-Verlag, Berlin (1978).Google Scholar
  15. 15.
    B. D. Ratner, P. K. Weathersby, A. S. Hoffman, M. A. Kelly, and L. H. Scharpen, Radiation-grafted hydrogels for biomedical applications as studied by the ESC A technique, J. Appl. Polym. Sci. 22, 643–664 (1978).CrossRefGoogle Scholar
  16. 16.
    Y. Yamashita and Y. Tsukahara, Control of polymer surface structure by tailored graft-copolymers, ACS Org. Coatings Appl. Polym. Sci. Proc. 46, 75–78 (1982).Google Scholar
  17. 17.
    F. J. Holly and M. F. Refojo, in: Hydrogels for Medical and Related Applications (J. D. Andrade, ed.), (1976).Google Scholar
  18. 17a.
    F. J. Holly and M. F. Refojo, ACS Symp. Ser. 31, 252–266 (1976).CrossRefGoogle Scholar
  19. 18.
    D. S. Everhart and C. N. Reilley, The effects of functional group mobility on quantitative ESCA of plasma modified polymer surfaces, Surface Interface Anal. 3, 126–133 (1981).CrossRefGoogle Scholar
  20. 19.
    R. N. King, J. D. Andrade, S. M. Ma, D. E. Gregonis, and L. R. Brostrom, Interfacial characterization of hydrogel-water interfaces, in: Proceedings of the workshop on interfacial phenomena: Research needs and priorities, University of Washington, February 15–16, 1979, pp. 458–502, National Science Foundation, Washington, D.C. (1979).Google Scholar
  21. 20.
    Y. C. Ko, B. D. Ratner, and A. S. Hoffman, Characterization of hydrophilic-hydrophobic polymeric surfaces by contact angle measurements, J.Colloid Interface Sci. 82, 25–37 (1981).CrossRefGoogle Scholar
  22. 21.
    R. G. Azrak, Surface property variations in melt-formed thermoplastics, J. Colloid Interface Sci. 47, 779–794 (1974).CrossRefGoogle Scholar
  23. 22.
    D. C. Cohn, A. S. Hoffman, and B. D. Ratner, Radiation grafted hydrogels for biomaterials applications: Synthesis, structure and composition of HEMA: EMA graft copolymers on LDPE film, Abstracts of the Fourth European Conference on Biomaterials, Belgium, August 31-September 2, 1983.Google Scholar
  24. 23.
    H. Yasuda, Glow discharge polymerization, J.Polym. Sci., Macromol. Rev. 16, 199–293 (1981).CrossRefGoogle Scholar
  25. 24.
    E. Kay and A. Dilks, Plasma polymerization of fluorocarbons in rf capacitively coupled diode system, J. Vac. Sci. Technol. 18, 1–11 (1981).CrossRefGoogle Scholar
  26. 25.
    H. V. Boenig, Plasma Science and Technology, Cornell University Press, Ithaca, New York (1982).Google Scholar
  27. 26.
    E. A. Hegazy, I. Ishigaki, A. Rabie, A. M. Dessouki, and J. Okamoto, Study on radiation grafting of acrylic acid onto fluorine-containing polymers. II. Properties of membrane obtained by preirradiation grafting onto poly(tetrafluoroethylene), J.Appl. Sci. 26, 3871–3883 (1981).CrossRefGoogle Scholar
  28. 27.
    A. Chapiro, Radiation induced grafting, Radiat. Phys. Chem. 9, 55–67 (1977).Google Scholar
  29. 28.
    T. Tagawa, J. Mori, S. Aita, and K. Ogura, Application of the high resolution SEM to the fine structure study of polyethylene, Micron 9, 215–221 (1978).Google Scholar
  30. 29.
    P. E. Gibson, M. A. Vallance, and S. L. Cooper, Morphology and properties of polyurethane block copolymers. Dev. Block Copolym. 1, 217–259 (1982).Google Scholar
  31. 30.
    D. A. Thomas, Morphology characterization of multiphase polymers by electron microscopy, J. Polym. Sci., Polym. Symp. 60, 189–200 (1977).Google Scholar
  32. 31.
    H. R. Thomas and J. J. O’Malley, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy. Polystyrene/poly(ethylene oxide) diblock copolymers, Macromolecules 12, 323–329 (1979).CrossRefGoogle Scholar
  33. 32.
    E. J. Roche and E. L. Thomas, Defocus electron microscopy of multiphase polymers: use and misuse, Polymer 22, 333–341 (1980).CrossRefGoogle Scholar
  34. 33.
    S. Y. Hobbs and V. H. Watkins, The use of chemical contrast in the SEM analysis of polymer blends, J.Polym. Sci., Polym. Phys. Ed. 20, 651–658 (1982).CrossRefGoogle Scholar
  35. 34.
    J. M. Short and R. G. Crystal, Morphology of block copolymers, Appl. Polym. Symp. 16, 137–151 (1971).Google Scholar
  36. 35.
    J. N. Sultan, R. C. Laible, and F. J. McGarry, Microstructure of two-phase polymers, Appl. Polym. Symp. 16, 127–136 (1971).Google Scholar
  37. 36.
    J. D. Andrade, D. L. Coleman, and D. E. Gregonis, Characterization of polymer surface morphology by scanning electron microscopy using backscattered electron imaging, Makromol Chem., Rapid Commun. 1, 101–104 (1980).CrossRefGoogle Scholar
  38. 37.
    D. T. Clark, J. Peeling, and J. J. O’Malley, Application of ESCA to polymer chemistry. VIII. Surface structures of AB block copolymers of polydimethylsiloxane and polystyrene, J. Polym. Sci., Polym. Chem. Ed. 14, 543–551 (1976).CrossRefGoogle Scholar
  39. 38.
    D. Shuttleworth, J. G. VanDusen, J. J. O’Malley, and H. R. Thomas, An X-ray photoelectron study of low molecular weight polystyrene-polydimethyl siloxane block copolymers, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 20, 499–502 (1979).Google Scholar
  40. 39.
    J. E. McGrath, D. W. Dwight, J. S. Riffle, T. F. Davidson, D. C. Webster, and R. Viswanathan, Bulk and surface segregation in polycarbonate-polysulfone and polycarbonate-polydimethylsiloxane block copolymers, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 20 (2), 528–530 (1979).Google Scholar
  41. 40.
    D. G. LeGrand and G. L. Gaines, Jr., Surface activity of block copolymers of dimethyl-siloxane and bisphenol-A carbonate in polycarbonate, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 11, 442–446 (1970).Google Scholar
  42. 41.
    M. J. Owen and T. C. Kendrick, Surface activity of polystyrene-polysiloxane-polystyrene ABA block copolymers, Macromolecules 3, 458–461 (1970).CrossRefGoogle Scholar
  43. 42.
    G. L. Gaines Jr., and G. W. Bender, Surface concentration of a styrene-dimethylsiloxane block copolymer in mixtures with polystyrene, Macromolecules 5, 82–86 (1972).CrossRefGoogle Scholar
  44. 43.
    Y. Yamashita, Surface properties of styrene-tetrahydrofuran block copolymers, J. Macromol. Sci, Chem. 13, 401–413 (1979).CrossRefGoogle Scholar
  45. 44.
    K. Ito, N. Usami, and Y. Yamashita, Syntheses of methyl methacrylate-stearyl methacrylate graft copolymers and characterization by inverse gas chromatography, Macromolecules 13, 216–221 (1980).CrossRefGoogle Scholar
  46. 45.
    J. J. O’Malley, H. R. Thomas, and G. M. Lee, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy. Polystyrene/poly(ethylene oxide) triblock copolymers, Macromolecules 12, 996–1001 (1979).CrossRefGoogle Scholar
  47. 46.
    H. R. Thomas and O’Malley, Surface studies on multicomponent polymer systems by X-ray photoelectron spectroscopy: Polystyrene/poly(ethylene oxide) homopolymer blends, Macromolecules 14, 1316–1320 (1981).CrossRefGoogle Scholar
  48. 47.
    T. J. Fabish and H. R. Thomas, Copolymer structure through charge injection and X-ray photoemission, ACS Org. Coatings Plastics Chem. Prepr. 42, 406–411 (1980).Google Scholar
  49. 48.
    S. R. Hanson, L. A. Harker, B. D. Ratner, and A. S. Hoffman, in: Biomaterials 1980 (G. D. Winter, D. F. Gibbons, and H. Plenk, Jr., eds.), pp. 519–530, John Wiley and Sons, Ltd., London (1982).Google Scholar
  50. 49.
    M. D. Lelah, L. K. Lambrecht, B. R. Young, and S. L. Cooper, Physiochemical characterization and in vivo blood tolerability of cast and extruded Biomer, J. Biomed. Materials Res. 17, 1–22 (1983).CrossRefGoogle Scholar
  51. 50.
    V. Sa Da Costa, D. Brier-Russell, E. W. Salzman, and E. W. Merrill, ESCA studies of polyurethanes: Blood platelet activation in relation to surface composition, J. Colloid Interface Sci. 80, 445–452 (1981).CrossRefGoogle Scholar
  52. 51.
    C. S. P. Sung and C. B. Hu, ESCA studies of surface chemical composition of segmented polyurethanes, J. Biomed. Materials Res. 13, 161–171 (1979).CrossRefGoogle Scholar
  53. 52.
    K. Knutson and D. J. Lyman, in: Biomaterials: Interfacial Phenomena and Applications (S. L. Cooper and N. A. Peppas, eds.), Adv. Chem. Ser. 199, 109–132 (1982).CrossRefGoogle Scholar
  54. 53.
    S. W. Graham and D. M. Hercules, Surface spectroscopic studies of Biomer, J. Biomed. Materials Res. 15, 465–477 (1981).CrossRefGoogle Scholar
  55. 54.
    E. Nyilas and R. S. Ward, Jr., in: Science and Technology of Polymer Processing (N. P. Suh and N. H. Sung, eds.), pp. 770–808, MIT Press, Cambridge, Massachusetts (1979).Google Scholar
  56. 55.
    S. I. Stupp, J. W. Kauffman, and S. H. Carr, Interactions between segmented polyurethane surfaces and the plasma protein fibrinogen. J. Biomed. Materials Res. 11, 237–250 (1977).CrossRefGoogle Scholar
  57. 56.
    B. D. Ratner, in: Photon, Electron, and Ion Probes of Polymer Structure and Properties (D. W. Dwight, T. J. Fabish, and H. R. Thomas, eds.), ACS Symp. Ser. 162, 371–382 (1981).CrossRefGoogle Scholar
  58. 57.
    B. D. Ratner, in: Physicochemical Aspects of Polymer Surfaces (K. L. Mittal, ed.), Vol. 2, pp. 969–983, Plenum Publishing Corp., New York (1983).Google Scholar
  59. 58.
    C. B. Hu and C. S. P. Sung, Surface chemical composition-depth profile of polyether polyurethaneureas as studied by FT-IR and ESCA, Polym. Prepr., Am. Chem. Soc., Div. Polym. Chem. 21 (1), 156–158 (1980).Google Scholar
  60. 59.
    R. W. Paynter, B. D. Ratner, and H. R. Thomas, Polyurethane surfaces—An XPS study, Polym. Prepr., Am. Chem. Soc, Div. Polym. Chem. 24 (1), 13–14 (1983).Google Scholar
  61. 60.
    B. D. Ratner, R. W. Paynter, and H. R. Thomas, Polyurethane surfaces—An XPS study, Trans. Soc. Biomaterials 6, 21 (1983).Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Buddy D. Ratner
    • 1
  1. 1.Department of Chemical Engineering and Center for BioengineeringUniversity of WashingtonSeattleUSA

Personalised recommendations