In 1961, Jacob and Monod proposed the operon model of gene expression and its negative control primarily from the experimental results obtained by these authors and their colleagues studying the induced synthesis of proteins involved in the utilization of sugar lactose and development of bacteriophage X from a prophage state in Escherichia coli. 1 The experiments and arguments used in formulating the model revolved around genetic analysis of these two systems. To explain the results of the lactose system, they suggested the théorie de la double négativité. In the double negative control of the induced synthesis of lactose enzymes, in summary, a repressor protein binds to a DNA element, called an operator, and represses gene expression by inhibiting transcription initiation from the promoter which controls a set of contiguous structural genes (operon or transcription unit). When present, an inducer binds to the repressor inhibiting the operator-binding activity of the repressor by a mechanism which is called allosteric modification2 and allows transcription initiation of the operon. By analyzing the regulation of the genes encoding enzymes of arabinose utilization (the ara operon) in E. coli, Engelsberg and his colleagues, in 1965, proposed that regulation of transcription initiation can also occur through a mechanism of positive control.3


Transcription Initiation Cooperative Binding cAMP Receptor Protein Cold Spring Harbor Symposium Catabolite Activator Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 1961; 3:318–356.Google Scholar
  2. 2.
    Monod J, Changeux JP, Jacob F. Allosteric proteins and cellular control systems. J Mol Biol 1963; 6:306–329.Google Scholar
  3. 3.
    Engelsberg E, Irr J, Power J et al. Positive control of enzyme synthesis by gene C in the L-arabinose system. J Bacteriol 90; 90:946–957.Google Scholar
  4. 4.
    Schwartz D, Beckwith JR. Mutants missing a factor necessary for the expression of catabolite-sensitive operons in E. coli. In: Beckwith JR, Zipser D, eds. The Lac Operon. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1970:417–422.Google Scholar
  5. 5.
    Perlman RL, Pastan I. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem Biophys Res Comm 1969; 37:151–157.Google Scholar
  6. 6.
    Emmer M, deCrombrugghe B, Pastan I et al. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci USA 1970; 66:480–487.Google Scholar
  7. 7.
    Zubay G, Schwartz DO, Beckwith JR. The mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci USA 1970; 66:104–110.Google Scholar
  8. 8.
    Monod J. The phenomenon of enzymatic adaptation. Growth 1947; 11:223 – 289.Google Scholar
  9. 9.
    Magasanik B. Catabolite repression. Cold Spring Harbor Symposium Quant. Biol. 1961; 26:249–256.Google Scholar
  10. 10.
    Makman RS, Sutherland EQ. Adenosine 3′,5′-phosphate in Escherichia coli. J Biol Chem 1965; 240:1309–1314.Google Scholar
  11. 11.
    Buttin G. Mechanismes regulateurs dans biosynthese des enzymes du metabolism du galactose chex Escherichia coli K-12. 1. La biosynthese indreile de la galactokinase el l’induction simultaneous de la sequence enzymatique. J Mol Biol 1963; 7:164–182.Google Scholar
  12. 12.
    Miller JH. The lacI gene: its role in lac Operon control and its use as a genetic system. In: Miller JH, Reznikoff WE, esd. The Operon. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1978:31–88.Google Scholar
  13. 13.
    Beckwith J. The operon: an historical account. In: Miller JH, Reznikoff WE, eds. The Operon. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1987:1439–1443.Google Scholar
  14. 14.
    Beckwith J. The Lactose Operon. In: Neidhardt FC, Ingraham JL, Low KB, Magasaki, B, Schaecter, M, Umberger, HE, eds. Escherichia coli and Salmonella typhimurium. ASM, 1987:1444–1452.Google Scholar
  15. 15.
    Beckwith JR. lac. The genetic system. In: Miller JH, Reznikoff WE, eds. The Operon. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1970:11–30.Google Scholar
  16. 16.
    Adhya S. The Galactose operon. In: Neidhardt FC, Ingraham FL, Low KB, Magasanik B, Schaecter M, Umberger HE, eds. Escherichia coli and Salmonella typhimurium. ASM, 1987:1503–1512.Google Scholar
  17. 17.
    Robbins AR, Guzman R, Rotman B. Roles of individual mgl gene products in the beta-methylgalactoside transport system of Escherichia coli K12. J Biol Chem 1976; 25:3112–3116.Google Scholar
  18. 18.
    Riordan G, Kornberg HL. Proc R Soc Lon (Biol) 1977; 198:401–410.Google Scholar
  19. 19.
    Sherman JR, Adler J. Galactokinase in Escherichia coli K-12. J Biol Chem 1963; 238:873–878.Google Scholar
  20. 20.
    Bouffard G, Rudd K, Adhya S. Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J Mol Biol 1994; 244:269–278.Google Scholar
  21. 21.
    Scaife J, Beckwith JR. Mutational alteration of the maximal level of lac operon expression. Cold Spring Harbor Symposium Quant. Biol. 1966; 31:403–408.Google Scholar
  22. 22.
    Hopkins JD. A new class of promoter mutations in the lactose operon of Escherichia coli. J Mol Biol 1974; 87:715–724.Google Scholar
  23. 23.
    Malan TP, McClure WR. Dual promoter control of the Escherichia coli lactose operon. Cell 1984; 39:173–180.Google Scholar
  24. 24.
    Rajendrakumar G, personal communication.Google Scholar
  25. 25.
    Yu X-M, Reznikoff W. Deletion analysis of the Escherichia coli lactose promoter P2. Nucleic Acids Res 1987; 13:2457–1468.Google Scholar
  26. 26.
    Donnelly CE, Reznikoff WS. Mutations in the lac P2 promoter. J Bacteriol 1987; 169:1812–1817.Google Scholar
  27. 27.
    Simpson RB. Interaction of the cAMP receptor protein with the lac promoter. Nucleic Acids Res 1980; 8:759–766.Google Scholar
  28. 28.
    Ebright RH, Cossart P, Gicquel-Sanzey B et al. Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature 1984; 311:232–235.Google Scholar
  29. 29.
    Weber IT, Steitz TA. Structure of a complex of catabolite gene activator protein and cyclic AMP at 2.5Å resolution. J Mol Biol 1987; 198:311–326.Google Scholar
  30. 30.
    Adhya S, Ryu S, Garges S. Role of allosteric changes in cyclic AMP receptor protein function. Subcell Biochem. In: Bigwas BB, Roy S, eds. Proteins: Structure, Function and Engineering. New York: Plenum Press, 1994; 24:303–321.Google Scholar
  31. 31.
    Gilbert W, Gralla J, Majors J et al. Lactose operator sequences. In: Sund H, Blauer G, eds. Protein Ligand Interactions. Perlin: de Gruyter, 1975:193–210.Google Scholar
  32. 32.
    Reznikoff WS, Winter RB, Hurley CK. The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci USA 1974; 71:2314–2318.Google Scholar
  33. 33.
    Pfahl M, Guide V, Bourgeois S. “Second” and “third” operator of lac operon: an investigation of their role in the regulatory mechanisms. J Mol Biol 1979; 127:339–344.Google Scholar
  34. 34.
    Oehler S, Eismann ER, Kramer H et al. The operators of the lac operon cooperate in repression. EMBO J 1990; 9:973–975.Google Scholar
  35. 35.
    Müller-Hill B, Beyreuter K, Gilbert W. Lac repressor from Escherichia coli. Methods Enzymol 1971; 21D:483–487.Google Scholar
  36. 36.
    Geisler N, Weber K. Isolation of amino-terminal fragment of lactose repressor necessary for DNA binding. Biochem 1977; 16:938–943.Google Scholar
  37. 37.
    Ebright RH. Evidence for a contact between glutamine 18 of lac repressor and base pair 7 of lac operator. Proc Natl Acad Sci USA 1986; 83:303–307.Google Scholar
  38. 38.
    O’Gorman RO, Rosenberg JM, Kallai, OB et al. Equilibrium binding of inducer to lac repressor-operator DNA complex. J Biol Chem 1980; 255:10107 – 10114.Google Scholar
  39. 39.
    Weickert MJ, Adhya S. A family of bacterial regulators homologous to Gal and Lac repressors. J Biol Chem 1992; 267:15869–15874.Google Scholar
  40. 40.
    Adhya S, Miller W. Modulation of the two promoters of the galactose operon of Escherichia coli. Nature 1979; 279:492–494.Google Scholar
  41. 41.
    Musso R, deLauro R, Adhya S et al. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 1977; 12:847–854.Google Scholar
  42. 42.
    Taniguchi T, O’Neill M, deCrombrugghe B. Interaction site of Escherichia coli cyclic AMP receptor protein on DNA of galactose operon promoters. Proc Natl Acad Sci USA 1979; 76:5090–5094.Google Scholar
  43. 43.
    Irani M, Orosz L, Adhya S. A control element within a structural gene: the gal operon of Escherichia coli. Cell 1983; 32:783–788.Google Scholar
  44. 44.
    Fritz H-J, Bicknase H, Gleumes B et al. Characterization of two mutations in the Escherichia coli galE gene inactivating the second galactose operator and comparative studies of repressor binding. EMBO J 1983; 2:2129–2135.Google Scholar
  45. 45.
    Majumdar A, Adhya S. Demonstration of two operator elements in gal: in vitro repressor binding studies. Proc Natl Acad Sci USA 1984; 81:6100–6104.Google Scholar
  46. 46.
    Buttin G. Mechanismes regulateurs dans la biosynthese des enzymes du metabolisme du galactose chez Escherichia coli K-12. II. Le determinisme de la regulation. J Mol Biol 1963; 7:183–205.Google Scholar
  47. 47.
    Adhya S, Echols H. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J Bacteriol 1966; 92:601–608.Google Scholar
  48. 48.
    Majumdar A, Rudikoff S, Adhya S. Purification and properties of Gal repressor: pL-galR fusion in pKC31 plasmid vector. J Biol Chem 1987; 262:2326–2331.Google Scholar
  49. 49.
    Majumdar A, Adhya S. Probing the structure of Gal operator-repressor complexes. J Biol Chem 1986; 262:13258–13262.Google Scholar
  50. 50.
    Müller-Hill B. Sequence homology between Lac and Gal repressors and three sugar-binding periplasmic proteins. Nature 1983; 302:163–164.Google Scholar
  51. 51.
    Hsieh M, Hensley P, Brenowitz M et al. A molecular model of the in-ducer-binding domain of the galactose repessor of Escherichia coli: J Biol Chem 1994; 269:13825–13835.Google Scholar
  52. 52.
    Saedler H, Gullon A, Fiethen L et al. Negative control of the galactose operon in E. coli. Mol Gen Genet 1968; 102:79–88.Google Scholar
  53. 53.
    Zhou Y, Chatterjee S, Roy S et al. The non-inducible nature of super-repressors of the gal operon in Escherichia coli. J Mol Biol 1995; 253:414–425.Google Scholar
  54. 54.
    Tokeson JPE, Garges S, Adhya S. Further inducibility of a constitutive system: ultrainduction of the gal operon. J Bact 1991; 173:2319–2327.Google Scholar
  55. 55.
    Golding A, Weickert MJ, Tokeson JPE et al. A mutation defining ultrainduction of the Escherichia coli gal operon. J Bact 1991; 173: 6294–6296.Google Scholar
  56. 56.
    Weickert MJ, Adhya S. Isorepressor of the gal regulon in Escherichia coli. J Mol Biol 1992; 226:69–83.Google Scholar
  57. 57.
    Weickert MJ, Adhya S. The galactose regulon of Escherichia coli. Mol Microbiol 1993; 10:245–251.Google Scholar
  58. 58.
    Wharton RB, Brown EL, Ptashne M. Substituting an α-helix switches the sequence-specific DNA interactions of a repressor. Cell 1984; 38:361–369.Google Scholar
  59. 59.
    Wharton RP, Ptashne M. A new-specificity mutant of 434 repressor that defines an amino acid-based pair contact. Nature 1985; 316:601–605.Google Scholar
  60. 60.
    Lehming N, Savtorius J, Miemöller M et al. The interaction of the recognition helix of lac repressor with lac operator. EMBO J 1987; 6:3145–3153.Google Scholar
  61. 61.
    Ketter J, personal communication.Google Scholar
  62. 62.
    Kolb A, Busby S, Buc H et al. Transcriptional regulation by cAMP and its receptor protein. Ann Rev Biochem 1993; 62:749–795.Google Scholar
  63. 63.
    Adhya S, Gottesman M, Garges S et al. Promoter resurrection by activators—a minireview. Gene 1993; 132:1–6.Google Scholar
  64. 64.
    Hawley DK, McClure WR. Compilation and analysis of Escherichia coli promoter sequences. Nucleic Acids Res 1983; 11:2237–2255.Google Scholar
  65. 65.
    Lavigne M, Herbert H, Kolb A, Buc, H. Upstream curved sequences influence the initiation of transcription at the Escherichia coli galactose Operon. J Mol Biol 1992; 224:293–306.Google Scholar
  66. 66.
    Plaskon RR, Wartell RM. Sequence distribution associated with DNA curvature are found upstream of strong E. coli promoter. Nucleic Acids Res 1987; 15:785–796.Google Scholar
  67. 67.
    Nagaich AK, Bhattacharyya D, Brahmachari SK et al. CA/TG sequence at the 5’ end of oligo(A) tracts strongly modulates DNA curvature. J Biol Chem 1994; 269:7824–7833.Google Scholar
  68. 68.
    Choy HE, Adhya S. RNA polymerase idling and clearance in gal promoters: use of supercoiled minicircle DNA template made in vivo. Proc Natl Acad Sci USA 1993; 96:472–476.Google Scholar
  69. 69.
    Jin DJ. Slippage synthesis at the galP2 promoter of Escherichia coli and its regulation by UTP concentration and cAMP-cAMP receptor protein. J Biol Chem 1994; 269:17221–17227.Google Scholar
  70. 70.
    Goodrich JA, McClure WR. Regulation of open complex formation at the Escherichia coli galactose Operon promoters. J Mol Biol 1992; 224:15–29.Google Scholar
  71. 71.
    Herbert M, Kolb B, Buc H. Overlapping promoters and their control in Escherichia coli: the gal case. Proc Natl Acad Sci USA 1986; 83:2807–2811.Google Scholar
  72. 72.
    Reznikoff WS, Abelson JN. The lac promoter. In: Miller JH, Reznikoff WS, eds. The Operon. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1978:221–243.Google Scholar
  73. 73.
    Adhya S, Garges S. Positive control. J Biol Chem 1990; 265:10797–10800.Google Scholar
  74. 74.
    Heyduk T, Lee J, Ebright Y et al. CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 1993; 364:548–549.Google Scholar
  75. 75.
    Pinkey M, Goggelt J. Binding of the cyclic AMP receptor protein of Escherichia coli to RNA polymerase. Biochem J 1988; 250:897–902.Google Scholar
  76. 76.
    Blazy B, Takahashi M, Baudras A. Binding of CRP to DNA-dependent RNA polymerase from E. coli: modulation by cAMP of the interactions with free and DNA-bound holo. Mol Biol Rep 1980; 6:39–43.Google Scholar
  77. 77.
    Riftina F, DeFalco E, Krakow J. Effects of an anti-alpha monoclonal antibody on interaction of Escherichia coli RNA polymerase with lac promoters. Biochem 1990; 29:4440–4446.Google Scholar
  78. 78.
    Ren YL, Garges S, Adhya S et al. Cooperative DNA binding of heterologous proteins: evidence for contact between cyclic AMP receptor protein and RNA polymerase. Proc Natl Acad Sci USA 1988; 85:4138–4142.Google Scholar
  79. 79.
    Spassky A, Busby S, Buch H. On the action of the cyclic AMP-cyclic AMP receptor protein complex at the Escherichia coli lactose and galactose promoter regions. EMBO J 1984; 3:43–50.Google Scholar
  80. 80.
    Straney D, Straney S, Crothers D. Synergy between Escherichia coli CAP protein and RNA polymerase in the lac promoter open complex. J Mol Biol 1989; 206:41–57.Google Scholar
  81. 81.
    Hochschild A, Ptashne M. Cooperative binding of X repressors to sites separated by integral turns of the DNA helix. Cell 1986; 44:681–687.Google Scholar
  82. 82.
    Eschenlauer AC, Reznikoff WS. Escherichia coli catabolite activator protein mutants defective in positive control of lac Operon transcription. J Bacteriol 1991; 173:5024–5029.Google Scholar
  83. 83.
    Bell A, Gaston K, Williams R et al. Mutations that affect the ability of Escherichia coli cyclic AMP receptor protein to activation transcription. Nucleic Acids Res 1990; 18:7243–7250.Google Scholar
  84. 84.
    Zhore Y, Zhang X, Ebright RH. Identification of the activating region of CAP: isolation and characterization of mutants of CAP specifically defective in transcription activation. Proc Natl Acad Sci USA 1993; 90:6081–6085.Google Scholar
  85. 85.
    Ryu S, Garges S, Adhya S. An arcane role of DNA in transcription activation. Proc Natl Acad Sci USA 1994; 91:8582–8586.Google Scholar
  86. 86.
    Igarashi K, Ishihama A. Bipartite functional map of the E. coli RNA polymerase alpha subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell 1991; 65:1015–1022.Google Scholar
  87. 87.
    Tang H, Severinov K, Goldfarb A et al. Location, structure and function of the target of a transcription activator protein. Genes Dev 1994; 8:3058–3067.Google Scholar
  88. 88.
    Blatter EE, Tang H, Ross W et al. Domain organization of RNA polymerase a subunit: C-terminal 85 amino acids constitute an independently folded domain capable of dimerization and DNA binding. Cell 1994; 78:889–896.Google Scholar
  89. 88a.
    Shanblatt SH, Revzin A. Interactions of the catabolite activator protein (CAP) at the galactose and lactose promoters of Escherichia coli probed by hydroxy radical footprinting. J Biol Chem 1986; 261:10885–10890.Google Scholar
  90. 89.
    Zhou Y, Rendergrast PS, Bell A et al. The functional subunit of a dimeric transcription activator protein depends on promoter architecture. EMBO J 1994; 13:4549–4557.Google Scholar
  91. 90.
    Jin DJ, Turnbough CL Jr. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products. J Mol Biol 1994; 236:72–80.Google Scholar
  92. 91.
    Ullmann A, Joseph E, Danchin A. cyclic AMP as a modulator of polarity in polycistronic units. Proc Natl Acad Sci USA 1979; 76:3194–3197.Google Scholar
  93. 92.
    Wilson DB, Hogness DS. The enzymes of the galactose Operon in Escherichia coli IV. The frequencies of translation of the terminal cistrons in the operon. J Biol Chem 1969; 244:2143–2148.Google Scholar
  94. 93.
    Adhya S, Garges S. Unpublished results.Google Scholar
  95. 94.
    Zabin I. Cold Spring Harbor Symposia on Quant Biol 1963; 28:431–435.Google Scholar
  96. 95.
    Michels CA, Zipser D. The non-linear relationship between the enzyme activity and structural protein concentration of thiogalactoside transacetylase of E. coli. Biochem. Biophys Res. Commun 1969; 34:522–527.Google Scholar
  97. 96.
    Choy HE, Adhya S. Control of gal transcription through DNA looping: inhibition of the initial transcribing complex. Proc Natl Acad Sci USA 1992; 90:472–476.Google Scholar
  98. 97.
    Haber R, Adhya S. Interaction of spatially separated protein-DNA complexes for control of gene expression: operator conversions. Proc Natl Acad Sci USA 1988; 86:9683–9687.Google Scholar
  99. 98.
    Brenowitz M, Jamison E, Majumdar A et al. Interaction of the Escherichia coli Gal repressor protein with its DNA operators in vitro. Biochem 1990; 29:3374–3383.Google Scholar
  100. 99.
    Brenowitz M, Mandai N, Pickar A et al. DNA-binding properties of a Lac repressor mutant incapable of forming tetramers. J Biol Chem 1991; 266:1281–1288.Google Scholar
  101. 100.
    Kramer H, Niemoller M, Amouyal M et al. lac repressor forms loops with linear DNA carrying two suitable spaced lac operators. EMBO J 1987; 6:1481–1491.Google Scholar
  102. 101.
    Mandai N, Su W, Haber R et al. DNA looping in cellular repression of transcription of the Galactose operon. Genes & Develop 1990; 4:410–418.Google Scholar
  103. 102.
    Alberti S, Oehler S, von Wilcken-Bergmann B et al. Genetic analysis of the leucine heptad repeats of Lac repressor: evidence for a 4-helicas bundle. New Biol 1991; 3:57–62.Google Scholar
  104. 103.
    Friedman AM, Fischmann TO, Steitz TA. Crystal structure of lac repressor core tetramer and its implication for DNA looping. Science 1995; 268:1721–1727.Google Scholar
  105. 104.
    Choy HE, Park SW, Parrack P and Adhya S. Transcription regulation by inflexibility of promoter DNA in a looped complex. Proc Natl Acad Sci USA 1995; 92:7327–7331.Google Scholar
  106. 105.
    Choy H, Park SW, Aki T, Parrack P, Fujita N, Ishihama A, Adhya S. Repression and activation of transcription by Gal and Lac repressors: Involvement of alpha subunit of RNA polymerase. EMBO J 1995; 14:4523–4529.Google Scholar
  107. 106.
    Schlax PJ, Capp MW, Record Jr MT. Inhibition of transcription initiation by Lac repressor. J Mol Biol 1995; 245:331–350.Google Scholar
  108. 107.
    Straney SB, Crothers DM. Lac repressor is a transient gene-activating protein. Cell 1987; 51:699–707.Google Scholar
  109. 108.
    Lee J, Goldfarb A. Lac repressor acts by modifying the initial transcribing complex so that it cannot leave the promoter. Cell 1991; 66:793–798.Google Scholar
  110. 109.
    Brodolin KL, Studitsky VM, Mirzabekov AD. Conformational changes in E. coli RNA polymerase during promoter recognition. Nucleic Acids Res 1993; 21:5748–5753.Google Scholar
  111. 110.
    Kleina LG, Miller JH. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 1990; 212:295–318.Google Scholar
  112. 111.
    Eschenlauer AC, Reznikoff WS. Escherichia coli catabolite gene activator protein mutants defective in positive control of lac operon transcription. J Bacteriol 1991; 173:5024–5029.Google Scholar
  113. 112.
    Busby S, Irani M, deCrombrugghe B. Isolation of mutant promoters in the Escherichia coli galactose operon using localized mutagenesis on cloned DNA fragments. J Mol Biol 1982; 154:197–209.Google Scholar
  114. 113.
    Busby S, Aiba H, deCrombrugghe B. Mutations in the Escherichia coli operon that define two promtoers and the binding site of cyclic AMP receptor protein. J Mol Biol 1982; 154:211–227.Google Scholar
  115. 114.
    Vyas NK, Vyas MN, Quiocho FA. Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose and D-ribose. Structural and functional similarity. J Biol Chem 1991; 266:5226–5237.Google Scholar
  116. 115.
    Chakerian AE, Matthews KS. Characterization of mutations in oligomer-ization domain of Lac repressor protein. J Biol Chem 1991; 266: 22206–22214.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Sankar Adhya

There are no affiliations available

Personalised recommendations