Translational Control of Gene Expression in E. Coli and Bacteriophage

  • Mathias Springer


Gene expression can be regulated in response to very different stimuli. These may be external, such as the cellular growth medium, or internal, in response to a specific need at a given stage of the cell cycle or development. In many cases, the regulation is transcriptional. The discovery that translation is a level of gene expression at which regulation can take place goes back to the observation that transcription is not necessary for early phases of embryonic development in many organisms.1 Gene expression following fertilization relies completely on maternal mRNAs which are translationally repressed until then.2 Translational control in prokaryotes was discovered first with RNA bacteriophages where translation is the sole possible level of regulation,3,4 later in DNA phages and finally in E. coli. Even if much remains to be understood about translational regulation in this bacterium, very few genes from other prokaryotes or from eukaryotes have been studied in the same kind of molecular detail as those of coliphages and E. coli itself.


Ribosomal Protein Coat Protein Translational Control Translational Operator Initiator tRNA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gross PR, Malkin LI, Moyer WA. Templates for the first proteins of embryonic development. Proc Natl Acad Sci USA 1964; 51:407.Google Scholar
  2. 2.
    Newport J, Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 1982; 30:675–686.Google Scholar
  3. 3.
    Lodish HF, Cooper S, Zinder N. Host-dependent mutants of the bacteriophage f2 IV. On the biosynthesis of the viral RNA polymerase. Virology 1964; 24:60–70.Google Scholar
  4. 4.
    Lodish H, Zinder N. Mutants of the bacteriophage f2 VIII. Control mechanisms for phage-specific synthesis. J Molec Biol 1966; 19:333–348.Google Scholar
  5. 5.
    Witherell GW, Gott JM, Uhlenbeck OC. Specific interaction between RNA phage coat proteins and RNA. Prog Nucl Acid Res Molec Biol 1991; 40:185–220.Google Scholar
  6. 6.
    Miller ES, Karam JD, Spicer E. Control of translation initiation: mRNA structure and protein repressors. In: Karam JD, ed. The molecular biology of bacteriophage T4. Washington DC: American Society for Microbiology, 1994:193–205.Google Scholar
  7. 7.
    Oppenheim A, Kornitzer D, Altuvia S et al. Post-transcriptional control of the lysogenic pathway in bacteriophage λ. Prog Nucleic Acid Res Molec Biol 1993; 46:37–49.Google Scholar
  8. 8.
    Zengel JM, Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in E. coli. Prog Nucleic Acid Res Molec Biol 1994; 47:331–369.Google Scholar
  9. 9.
    McCarthy JEG, Gualerzi C. Translational control of prokaryotic gene expression. Trends in Genet 1990; 6:78–85.Google Scholar
  10. 10.
    Lindahl L, Hinnebush A. Diversity of mechanisms in the regulation of translation in prokaryotes and lower eukaryotes. Current Opinion in Genet and Devel 1992; 2:720–726.Google Scholar
  11. 11.
    Dunn JJ, Studier FW. Effect of RNAse III cleavage on translation of bacteriophage T7 mRNAs. J Molec Biol 1975; 99:487–499.Google Scholar
  12. 12.
    Wulczyn FG, Kahmann R. Translational stimulation: RNA sequence and structure requirements for binding of Com protein. Cell 1991; 65:259–269.Google Scholar
  13. 13.
    Hattman S, Newman L, Murthy HMK et al. Com, the phage Mu mom translational activator, is a zinc-binding protein that binds specifically to its cognate mRNA. Proc Natl Acad Sci USA 1991; 88:10027–10031.Google Scholar
  14. 14.
    Butler JS, Springer M, Dondon J et al. Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. J Mol Biol 1986; 192:767–780.Google Scholar
  15. 15.
    Springer M, Graffe M, Butler JS et al. Genetic definition of the translational operator of the threonine tRNA ligase gene in Escherichia coli. Proc Natl Acad Sci USA 1986; 83:4384–4388.Google Scholar
  16. 16.
    Court D. RNA processing and degradation by RNAse III. In: Belasco J, Brawerman G, eds. Control of mRNA stability. San Diego, CA: Academic Press, 1993:71–116.Google Scholar
  17. 17.
    Robert-Lemeur M, Portier C. E. coli polynucleotide Phosphorylase expression is autoregulated through an RNAse Ill-dependent mechanism. EMBO J 1992; 11:2633–2641.Google Scholar
  18. 18.
    Jain C, Belasco JG. RNase E autoregulates its synthesis by controlling the degradation rate of its own mRNA in E. coli. Unusual sensistivity of the rne transcript to RNase E activity. Genes & Devel 1995; 9:84–96.Google Scholar
  19. 19.
    Nomura M, Gourse R, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Ann Rev Biochem 1984; 53:73–117.Google Scholar
  20. 20.
    Lesage P, Chiaruttini C, Dondon J et al. Messenger RNA secondary structure and translational coupling in the E. coli Operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. J Molec Biol 1992; 228:366–386.Google Scholar
  21. 21.
    Schmidt BF, Berkhout B, Overbeek GP et al. Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2. J Molec Biol 1987; 195:505–516.Google Scholar
  22. 22.
    Berkhout B, Schmidt BF, van Strien A et al. Lysis gene of bacteriophage MS2 is activated by translation termination at the overlapping coat gene. J Molec Biol 1987; 195:517–524.Google Scholar
  23. 23.
    Adhin MR, van Duin J. Scanning model for translation reinitiation in Eubacteria. J Molec Biol 1990; 213:811–818.Google Scholar
  24. 24.
    de Smit MH, van Duin J. Control of prokaryotic translation initiation by mRNA secondary structure. Prog Nucl Acid Res and Molec Biol 1990; 38:1–35.Google Scholar
  25. 25.
    Cerretti DP, Mattheakis LC, Kearney KR et al. Translational regulation of the spc Operon in E. coli. Identification and structural analysis of the target site for S8 repressor protein. J Molec Biol 1988; 204:309–329.Google Scholar
  26. 26.
    Mattheakis L, Vu L, Sor F et al. Retroregulation of the synthesis of ribosomal proteins L14 and L24 by feedback repressor S8 in E. coli. Proc natl Acad Sci USA 1989; 86:448–452.Google Scholar
  27. 27.
    Saito K, Nomura M. Post-transcriptional regulation of the str Operon in E. coli. Strucural and mutational analysis of the target site for translational repressor S7. J Molec Biol 1994; 235:125–139.Google Scholar
  28. 28.
    Saito K, Mattheakis LC, Nomura M. Post-transcriptional regulation of the str operon in E. coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J Molec Biol 1994; 235:111–124.Google Scholar
  29. 29.
    Michel B, Zinder N. Translation repression in bacteriophage f1: characterisation of the gene V protein target on the gene II mRNA. Proc Natl Acad Sci USA 1989; 86:4002–4006.Google Scholar
  30. 30.
    Zaman G. A. S., Kaan A et al. Regulation of expression of the genome of bacteriophage M13. Gene V protein regulated translation of the mRNAs encoded by genes I, III, V and X. Bioch Bioph Acta 1991; 1089:183–192.Google Scholar
  31. 31.
    Schmidt MG, Dolan KM, Oliver DB. Regulation of Escherichia coli secA messenger RNA translation by a secretion-responsive element. J Bacteriol 1991; 173:6605–6611.Google Scholar
  32. 32.
    Oliver DB. SecA Protein—Autoregulated ATPase Catalysing Preprotein Insertion and Translocation Across the Escherichia-Coli Inner Membrane. Mol Microbiol 1993; 7:159–165.Google Scholar
  33. 33.
    de Smit MH, van Duin J. Secondary structure of the ribosome binding site determines translation efficiency: a quantitative analysis. Proc Natl Acad Sci USA 1990; 87:7668–7672.Google Scholar
  34. 34.
    Ringquist S, Shinedling S, Barrick D et al. Translation initiation in Escherichia coli—sequences within the ribosome-binding site. Mol Microbiol 1992; 6:1219–1229.Google Scholar
  35. 35.
    Ray PN, Pearson ML. Functional inactivation of bacteriophage λ morphogenic gene mRNA. Nature 1975; 253:647–650.Google Scholar
  36. 36.
    Hall MH, Gabay J, Débarbouillé M et al. A role for mRNA secondary structure in the control of translation initiation. Nature 1982; 295: 616–618.Google Scholar
  37. 37.
    Chapon C. Expression of malT, the regulator gene of the maltose regulon in E. coli, is limited both at transcription and translation. EMBO J 1982; 1:369–374.Google Scholar
  38. 38.
    Yu YT, Snyder L. Translation elongation factor Tu cleaved by a phage-exclusion system. Proc Natl Acad Sci USA 1994; 91:802–806.Google Scholar
  39. 39.
    Craigen WJ, Cook RG, Tate WP et al. Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci, USA 1985; 82:3616–3620.Google Scholar
  40. 40.
    Curran JF, Yarus M. Use of tRNA suppressors to probe regulation of E. coli release factor 2. J Molec Biol 1988; 203:75–83.Google Scholar
  41. 41.
    Gold L. Post-transcriptional regulatory mechanisms in Escherichia coli. Ann Rev Biochem 1988; 57:199–233.Google Scholar
  42. 42.
    Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry 1990; 29:5882–5888.Google Scholar
  43. 43.
    Hoopes BC, McClure WR. Strategies in regulation of transcription initiation. In: Neidhardt FC, ed. Escherichia Coli and Salmonella typhimurium. Washington, DC: American Society for Microbiology, 1987:1231–1240.Google Scholar
  44. 44.
    Hui A, deBoer FIA. Specialized ribosome system: preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci USA 1987; 84:4762–4766.Google Scholar
  45. 45.
    Thanaraj TA, Pandit MW. An additional ribosome-binding site on mRNA of highly expressed genes and a bifunctional site on the colicin fragment of 16S rRNA from E. coli: important determinants of the efficiency of translation initiation. Nucleic Acids Res 1989; 17:2973–2985.Google Scholar
  46. 46.
    Sprengart ML, Fatscher HP, Fuchs E. The initiation of translation in E. coli: apparent base pairing between the 16S rRNA and downstream sequences of the mRNA. Nucl Acids Res 1990; 18:1719–1723.Google Scholar
  47. 47.
    de Smit MH, van Duin J. Translation initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J Molec Biol 1994; 235:173–184.Google Scholar
  48. 48.
    Friesen JD, Tropak M, An G. Mutations in the rplJ leader of Escherichia coli that abolish feedback regulation. Cell 1983; 32:361–369.Google Scholar
  49. 49.
    Lesage P, Truong HN, Graffe M et al. Translated translational operator in Escherichia coli: autoregulation in the infC-rpmI-rplT Operon. J Molec Biol 1990; 213:465–475.Google Scholar
  50. 50.
    Richter-Dahlfors AA, Ravnum S, Andersson DI. Vitamin B12 represion of the cob Operon in S. typhimurium: translational control of the cbiA gene. Molec Microbiol 1994; 13:541–553.Google Scholar
  51. 51.
    Richter-Dahlfors AA, Andersson DI. Cobalamine (vitamin B12) repression of the Cob operon in S. typhimurium requires sequences within the leader and the first translated open reading frame. Molec Microbiol 1992; 6:743–749.Google Scholar
  52. 52.
    McPheeters DS, Stormo GD, Gold L. Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. J Molec Biol 1988; 201:517–535.Google Scholar
  53. 53.
    Shamoo Y, M. KK, Konigsberg WH et al. Translation repression by the bacteriophage T4 gene 32 protein involves specific recognition of an RNA pseudoknot structure. J Molec Biol 1993; 232:89–104.Google Scholar
  54. 54.
    Romaniuk PJ, Lowary P, Wu HN et al. RNA binding site of R17 coat protein. Biochemistry 1987; 26:1563–1568.Google Scholar
  55. 55.
    ten Dam E, Pleij K, Draper D. Structural and functional aspects of RNA pseudoknots. Biochemistry 1992; 31:11665–11676.Google Scholar
  56. 56.
    Tang CK, Draper DE. Unusual mRNA pseudoknot structure is recognized by a translational repressor. Cell 1989; 57:531–536.Google Scholar
  57. 57.
    Philippe C, Portier C, Mougel M et al. Target site of E. coli ribosomal protein S15 on its mRNA. Conformation and interaction with the protein. J Molec Biol 1990; 211:415–426.Google Scholar
  58. 58.
    Brunei C, Caillet J, Lesage P et al. The domains of the E.coli threonyl-tRNA synthetase translational operator and their relation to threonine tRNA isoacceptors. J Molec Biol 1992; 227:621–634.Google Scholar
  59. 59.
    Johnsen M, Christensen T, Dennis PP et al. Autogenous control: ribosomal protein L10–L12 complex binds to the leader sequence of its mRNA. EMBO J 1982; 8:999–1004.Google Scholar
  60. 60.
    Christensen T, Johnsen M, Fiil NP et al. RNA secondary structure and translation inhibition: analysis of mutants in the rplJ leader. EMBO J 1984; 3:1609–1612.Google Scholar
  61. 61.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990; 249:505–510.Google Scholar
  62. 62.
    McClain WH. Rules that govern tRNA identity in protein synthesis. J Molec Biol 1993; 234:257–280.Google Scholar
  63. 63.
    Tang CK, Draper DE. Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationally regulated mRNA. Biochemistry 1990; 29:4434–4439.Google Scholar
  64. 64.
    Bénard L, Philippe C, Dondon L et al. Mutational analysis of the pseudoknot structure of the S15 translational operator from E. coli. Molec Microbiol 1994; 14:31–40.Google Scholar
  65. 65.
    Hou YM, Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature 1988; 333:140–145.Google Scholar
  66. 66.
    Lemaire G, Gold L, Yarus M. Autogenous translational repression of bacteriophage T4 gene 32 expression in vitro. J Molec biol 1978; 126:73–90.Google Scholar
  67. 67.
    von Hippel PH, Kowalczykowski SC, Lonberg N et al. Autoregulation of gene 32 expression. Quantitative evaluation of the expression and function of the bacteriophage T4 gene 32 (single-stranded DNA binding) protein system. J Molec Biol 1982; 162:795–818.Google Scholar
  68. 68.
    Alberts BM, Frey L. T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature 1970; 227:1313–1318.Google Scholar
  69. 69.
    Nomura M, Yates JL, Dean D et al. Feedback regulation of ribosomal protein gene expression in E. coli: structural homology of ribosomal RNA and ribosomal protein mRNA. Proc Natl Acad Sci USA 1980; 77: 7084–7088.Google Scholar
  70. 70.
    Said B, Cole JR, Nomura M. Mutational analysis of the L1 binding site of 23S rRNA in Escherichia coli. Nucleic Acids Res 1988; 22:10529–10545.Google Scholar
  71. 71.
    Gregory RJ, Cahill PBF, Thurlow DL et al. Interaction of E. coli ribosomal protein S8 with its binding sites in ribosomal RNA and messenger RNA. J Molec Biol 1988; 204:295–307.Google Scholar
  72. 72.
    Wu H, Jiang L, Zimmermann RA. The binding site for ribosomal protein SS in 16S rRNA and spc mRNA from E. coli: minimum structural requirements and the effects of single bulged bases on S8-RNA interaction. Nucl Acids Res 1994; 22:1687–1695.Google Scholar
  73. 73.
    Mougel M, Allmang C, Eyermann F et al. Minimal 16S rRNA binding site and role of conserved nucleotides in E. coli ribosomal protein S8 recognition. Eur J Biochem 1993; 215:787–792.Google Scholar
  74. 74.
    Springer M, Plumbridge JA, Butler JS et al. Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. J Molec Biol 1985; 185:93–104.Google Scholar
  75. 75.
    Moine H, Romby P, Springer M et al. Messenger RNA structure and gene regulation at the translational level in Esherichia coli: the case of threonine:tRNAThr ligase. Proc Natl Acad Sci USA 1988; 85:7892–7896.Google Scholar
  76. 76.
    Moine H, Romby P, Springer M et al. E. coli threonyl-tRNA synthetase and tRNAThr modulate the binding of the ribosome to the translation initiation site of the thrS mRNA. J Molec Biol 1990; 216:299–310.Google Scholar
  77. 77.
    Hasegawa T, Miyano M, Himeno H et al. Identity determinants of E. coli threonine tRNA. Biochem Biophys Res Commun 1992; 184:478–484.Google Scholar
  78. 78.
    Romby P, Brunei C, Caillet J et al. Molecular mimicry in translational control of E. coli threonyl-tRNA synthetase gene. Competitive inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity rules. Nucleic Acids Res 1992; 20:5633–5640.Google Scholar
  79. 79.
    Schulman LH. Recognition of transfer RNAs by aminoacyl-transfer RNA synthetases. Progress in Nucleic Acid Res and Molecular Biology 1991; 41:23–87.Google Scholar
  80. 80.
    Springer M, Graffe M, Dondon J et al. tRNA-like structures and gene regulation at the translational level: a case of molecular mimicry in E. coli. EMBO J 1989; 8:2417–2424.Google Scholar
  81. 81.
    Schulman LH, Pelka H. An anticodon change switches the identity of E. coli tRNAMet m from methionine to threonine. Nucleic Acids Res 1990; 18:285–289.Google Scholar
  82. 82.
    Graffe M, Dondon J, Caillet J et al. The specificity of translational control switched using tRNA identity rules. Science 1992; 225:994–996.Google Scholar
  83. 83.
    Cavarelli J, Rees B, Thierry JC et al. Yeast aspartyl-tRNA synthetase: a structural view of the aminoacylation reaction. Biochimie 1993; 75:1117–1123.Google Scholar
  84. 84.
    Altuvia S, Kornitzer D, Teff D et al. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Molec Biol 1989; 210:265–280.Google Scholar
  85. 85.
    Climie SC, Friesen JD. Feedback regulation of the rplJL-rpoBC ribosomal protein operon of Escherichia coli requires a region of mRNA secondary structure. J Molec Biol 1987; 198:371–381.Google Scholar
  86. 86.
    Deckman IC, Draper DE. S4-α mRNA translation regulation complex. II. Secondary structures of the RNA regulatory site in the presence and absence of S4. J Molec Biol 1987; 196:323–332.Google Scholar
  87. 87.
    Spedding G, Gluick TC, Draper D. Ribosome initiation complex formation with the pseudoknotted a operon mRNA. J Molec Biol 1993; 229:609–622.Google Scholar
  88. 88.
    Spedding G, Draper D. Allosteric mechanism for translational repression in the E. coli a operon. Proc Natl Acad Sci USA 1993; 90:4399–4403.Google Scholar
  89. 89.
    Portier C, Dondon L, Grunberg-Manago M. Translational autocontrol of the E. coli ribosomal protein S15. J Molec Biol 1990; 211:407–414.Google Scholar
  90. 90.
    Gralla JA, Steitz JA, Crothers DM. Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA. Nature 1974; 248:204–208.Google Scholar
  91. 91.
    Valegard K, Liljas L, Fridborg K et al. The three-dimensional structure of the bacterial virus MS2. Nature 1990; 345:36–41.Google Scholar
  92. 92.
    Beckett D, Uhlenbeck OC. Ribonucleoprotein complexes of R17 coat protein and a translational operator analog. J Molec Biol 1988; 204:927–938.Google Scholar
  93. 93.
    Peabody DS, Ely KR. Control of translation repression by protein-protein interaction. Nucl Acids Res 1992; 20:1649–1655.Google Scholar
  94. 94.
    Carey J, Cameron V, de Haseth PL et al. Sequence-specific interaction of R17 coat protein with its ribonucleic binding site. Biochemistry 1983; 22:2601–2610.Google Scholar
  95. 95.
    Peabody DS. The RNA binding site of bacteriphage MS2 coat protein. EMBO J 1993; 12:595–600.Google Scholar
  96. 96.
    Phillips SEV. Specific β-sheet interactions. Curr Opin Str Biol 1991; 1:89–98.Google Scholar
  97. 97.
    Shamoo Y, Ghosaini LR, Keating KM et al. Site-specific mutagenesis of T4 gene 32: the role of tyrosine residues in protein-nucleic acid intaractions. Biochemistry 1989; 28:7409–7414.Google Scholar
  98. 98.
    Berg J. Zinc fingers and other metal binding domains. J Biol Chem 1990; 265:6513–6616.Google Scholar
  99. 99.
    Gauss P, Boltrek Krassa K, McPheeters DS et al. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4. Proc Natl Acad Sci USA 1987; 84:8515–8519.Google Scholar
  100. 100.
    Shamoo Y, Webster KR, Williams KR et al. A retrovirus-like Zinc domain is essential for translational repression of bacteriophage T4 gene 32. J Biol Chem 1991; 266:7967–7970.Google Scholar
  101. 101.
    Darlix JL, Gabus C, Nugeyre MT et al. Cis elements and trans acting factors involved in the RNA dimerisation of human immunodeficiency virus HIV-1. J Mol Biol 1990; 216:689–699.Google Scholar
  102. 102.
    Kim YJ, Baker BS. Isolation of RRM-type RNA-binding protein genes and the analysis of their relatedness by using a numerical approach. Molec Cell Biol 1993; 13:174–183.Google Scholar
  103. 103.
    Webster KR, Spicer EK. Characterization of bacteriophage T4 regA protein-nucleic acid interactions. J Biol Chem 1990; 265:19007–19014.Google Scholar
  104. 104.
    Webster KR, Keill S, Konigsberg W et al. Identification of aminoacid residues at the interface of a bacteriophage T4 regA protein-nucleic acid complex. J Biol Chem 1992; 267:26097–26103.Google Scholar
  105. 105.
    Joswik CE, Miller ES. Regions of bacteriophage T4 and RB69 RegA translational repressor proteins that determine RNA binding specificity. Proc Natl acad Sci USA 1992; 89:5053–5057.Google Scholar
  106. 106.
    Babitzke P, Yanofsky C. Reconstitution of Bacillus subtilis trp attenuation in vitro with TRAP, the trp RNA-binding attenuation protein. Proc Natl Acad Sci USA 1993; 90:133–137.Google Scholar
  107. 107.
    Babitzke P, Stults JT, Shire SJ et al. TRAP, the trp RNA binding attenuation protein of B. subtilis, is a multisubunit complex that appears to recognize G/UAG repeats in the trpEDCFBA and trpG transcripts. J Biol Chem 1994; 269:16597–16604.Google Scholar
  108. 108.
    Schleif B. DNA binding by proteins. Science 1988; 241:1182–1187.Google Scholar
  109. 109.
    Houman F, Diaz-Torres M, Wright A. Transcriptional antitermination in the bgl Operon of E. coli is modulated by a specific RNA binding protein. Cell 1990; 62:1153–1163.Google Scholar
  110. 110.
    Rice PA, Steitz TA. Ribosomal protein L7/L12 has a helix-turn-helix motif similar to that found in DNA binding regulatory proteins. Nucl Acids Res 1989; 17:3757–3762.Google Scholar
  111. 111.
    Szewczak AA, Webster KR, Spicer EK et al. An NMR characterization of the RegA protein binding site of bacteriophage gene 44 mRNA. J Biol Chem 1991; 266:17832–17837.Google Scholar
  112. 112.
    Wower I, Kowaleski MP, Sears LE et al. Mutagenesis of ribosomal protein-S8 from Escherichia-Coli—Defects in Regulation of the spc Operon. J Bacteriol 1992; 174:1213–1221.Google Scholar
  113. 113.
    Allen G, Capasso R, Gualerzi C. Identification of the aminoacid residues of protein S5 and S8 adjacent to each other in the 30S ribosomal subunit of E. coli. J Biol Chem 1979; 254:9800–9806.Google Scholar
  114. 114.
    Mougel M, Ehresmann B, Ehresmann C. Binding of E. coli ribosomal protein S8 to 16S rRNA: kinetic and thermodynamic characterization. Biochemistry 1986; 25:2756–2765.Google Scholar
  115. 115.
    Wu H, Wower I, Zimmermann RA. Mutagenesis of ribosomal protein S8 from E. coli: expression, stability and RNA-binding properties of S8 mutants. Biochemistry 1993; 32:4761–4768.Google Scholar
  116. 116.
    Cusack S. Sequence, strucure and evolutionary relationships between class 2 aminoacyl-tRNA synthetases: an update. Biochimie 1993; 75:1077–1081.Google Scholar
  117. 117.
    Miller TW, Schimmel P. A metal-binding motif implicated in RNA recognition by an aminoacyl-tRNA synthetase and by a retroviral gene product. Molec Microbio 1992; 6:1259–1262.Google Scholar
  118. 118.
    Nureki O, Kohno T, Sakamoto K et al. Chemical modification and mutagenesis studies on Zinc binding of aminoacyl-tRNA synthetases. J Biol Chem 1993; 268:15368–15373.Google Scholar
  119. 119.
    Deckman IC, Draper DE, Thomas MS. S4-α mRNA translation regulation complex. I. Thermodynamics of formation. J Molec Biol 1987; 196:313–322.Google Scholar
  120. 120.
    Draper DE. Translational regulation of ribosomal proteins in E.coli. In: J. Ilan, ed. Translational regulation of gene expression. New York: Plenum publishing corporation, 1987:1–25.Google Scholar
  121. 121.
    Hartz D, McPheeters DS, Gold L. Selection of the initiator tRNA by E.coli initiation factors. Genes & Develop 1989; 3:1899–1912.Google Scholar
  122. 122.
    Hartz D, McPheeters DS, Green L et al. Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J Molec Biol 1991; 218: 99–105.Google Scholar
  123. 123.
    Winter RB, Morrissey L, Gauss P et al. Bacteriophage T4 regA protein binds to mRNAs and prevents translation initiation. Proc Natl Acad Sci USA 1987; 84:7822–7826.Google Scholar
  124. 124.
    Unnitham S, Green L, Morrissey L et al. Binding of the bacteriophage T4 RegA protein to mRNA targets: an AUG is required. Nucl Acids Res 1990; 18:7083–7092.Google Scholar
  125. 125.
    Philippe C, Eyermann F, Bénard L et al. Ribosomal protein S15 from E. coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci USA 1993; 90: 4394–4398.Google Scholar
  126. 126.
    Brunei C, Romby P, Moine H et al. Translational regulation of the E. coli threonyl-tRNA synthetase gene: structural and functional importance of the thrS operator domains. Biochimie 1993; 75:1167–1179.Google Scholar
  127. 127.
    de Smit MH. Regulation of translation by mRNA structure. 1994. Ph.D. thesis. University of Leiden.Google Scholar
  128. 128.
    Sacerdot C, Fayat G, Dessen P et al. Sequence of a 1.26-kb DNA fragment containing the structural gene for initiation factor IF3: presence of an AUU initiator codon. EMBO J 1982; 1:311–315.Google Scholar
  129. 129.
    Pon C, Brombach M, Thamm S et al. Cloning and characterization of a gene cluster from B. stearothermophilus comprising infC, rpmI, rplT. Mol Gen Genet 1989; 218:355–357.Google Scholar
  130. 130.
    Liveris D, Schwartz JJ, Geertman R et al. Molecular cloning and sequencing of infC, the gene encoding translation initiation factor-IF3, from four enterobacterial species. FEMS Microbiol Lett 1993; 112:211–216.Google Scholar
  131. 131.
    Hu WS, Wang RYH, Shih JWK et al. Identification of a putative infC-rpmI-rplT Operon flanked by long inverted repeats in Mycoplasma fermentans (Incognitus Strain). Gene 1993; 127:79–85.Google Scholar
  132. 132.
    Cheng YL, Kaiman LV, Kaiser D. The dsg gene of Myxococcus xanthus encodes a protein similar to translation initiation factor IF3. J Bacteriol 1994; 176:1427–1433.Google Scholar
  133. 133.
    Butler JS, Springer M, Grunberg-Manago M. AUU to AUG mutation in the initiator codon of the translation initiation factor IF3 abolishes translational autocontrol of its own gene (infC) in vivo. Proc Natl Acad Sci USA 1987; 84:4022–4025.Google Scholar
  134. 134.
    Berkhout B, van der Laken CJ, van Knippenberg PH. Formyl-methionyl-tRNA binding to 30S ribosomes programmed with homopolynucleotides and the effect of translational initiation factor 3. Biochim Biophys Acta 1986; 866:144–153.Google Scholar
  135. 135.
    Lateana A, Pon CL, Gualerzi CO. Translation of mRNAs with degenerate initiation triplet AUU displays high initiation factor 2 dependence and is subject to initiation factor 3 repression. Proc Natl Acad Sci USA 1993; 90:4161–4165.Google Scholar
  136. 136.
    Hartz D, Binkley J, Hollinsworth T et al. Domains of the initiator tRNA and initiation codon crucial for initiator tRNA selection by E.coli IF3. Genes and Develop 1990; 4:1790–1800.Google Scholar
  137. 137.
    Parsons GD, Donly BC, Mackie GA. Mutations in the leader sequence and initiation codon of the gene for ribosomal protein S20 (rpsT) affect both translational efficiency and autoregulation. J Bacteriol 1988; 170:2485–2492.Google Scholar
  138. 138.
    Donly BC, Mackie GA. Affinities of ribosomal protein S20 and C-terminal deletion mutants for 16S rRNA and S20 mRNA. Nucleic Acid Res 1988; 16:997–1010.Google Scholar
  139. 139.
    Rasmussen MD, Sorensen MA, Pedersen S. Isolation and characterization of mutants with impaired regulation of rpsA, the gene encoding ribosomal protein S1 of Escherichia coli. Molec Gene Genet 1993; 240:23–28.Google Scholar
  140. 140.
    Skouv J, Schnier J, Rasmussen MD et al. Ribosomal protein S1 of Escherichia coli is the effector for the regulation of its own synthesis. J Biol Chem 1990; 265:17044–170049.Google Scholar
  141. 141.
    Hershey JWB. Translational control in mammalian cells. Annu Rev Biochem 1991; 60:717–755.Google Scholar
  142. 142.
    Robertson ES, Nicholson AW. Phosphorylation of E. coli translation initiation factors by the bacteriophage T7 protein kinase. Biochemistry 1992; 31:4822–4827.Google Scholar
  143. 143.
    Robertson ES, Nicholson AW. Phosphorylation of elongation factor G and ribosomal protein S6 in bacteriophage T7-infected E. coli. Molec Microbiol 1994; 11:1045–1057.Google Scholar
  144. 144.
    Dunn JJ, Studier FW. T7 early RNAs and E. coli ribosomal RNAs are cut from large precursor RNAs in vivo by ribonuclease III. Proc Natl Acad Sci USA 1973; 70:3296–3300.Google Scholar
  145. 145.
    Saito H, Richardson CC. Processing of mRNA by RNAse III regulates expression of gene 1.2 of bacteriophage T7. Cell 1981; 27:533–542.Google Scholar
  146. 146.
    Altuvia S, Kornitzer D, Kobi S et al. Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. J Molec Biol 1991; 218:723–733.Google Scholar
  147. 147.
    Guarneros G. Retroregulation of bacteriophage λ int gene expression. In: Clarke A, Compas RW, Cooper M, Eisen H, Goebel W, Koprowski H, Melchers F, Olldstone M, Vogt PK, Wagner H, Wilson I, eds. Current topics in Microbiology and Immunology. Berlin: Springer-Velag, 1988:1–19.Google Scholar
  148. 148.
    Gitelman DR, Apirion D. The synthesis of some proteins is affected in RNA processing mutants of E. coli. Biochem and Biophys Res Com 1980; 96:1063–1070.Google Scholar
  149. 149.
    Bardwell JCA, Régnier P, Chen S-M et al. Autoregulation of RNase III operon by mRNA processing. EMBO J 1989; 8:3401–3407.Google Scholar
  150. 150.
    Régnier P, Grunberg-Manago M. Cleavage by RNase III in the transcripts of the metY-nusA-infC operon of E. coli releases the tRNA and initiates the decay of downstream mRNA. J Molec Biol 1989; 210:293–302.Google Scholar
  151. 151.
    Portier C, Dondon L, Grunberg-Manago M et al. The first step in the functional inactivation of the E. coli polynucleotide Phosphorylase mes-senger is a ribonuclease III processing at the 5′ end. EMBO J 1987; 6:2165–2170.Google Scholar
  152. 152.
    Uzan M, Favre R, Brody NE. A nuclease that cuts specifically in the ribosome binding site of some T4 mRNAs. Proc Natl Acad Sci USA 1988; 85:8895–8899.Google Scholar
  153. 153.
    Sanson B, Uzan M. Post-transcriptional controls in bacteriophage T4: roles of the sequence-specific endonuclease RegB. FEMS Microbiol Rev 1994; In press:Google Scholar
  154. 154.
    Sanson B, Uzan M. Dual role of the sequence-specific bacteriophage T4 endoribonuclease RegB: mRNA inactivation and mRNA destabilisation. J Molec Biol 1993; 233:429–446.Google Scholar
  155. 155.
    Russel M, Gold L, Morisett H et al. Translational, autogenous regulation of gene 32 expression during bacteriophage T4 infection. J Biol Chem 1976; 251:7263–7270.Google Scholar
  156. 156.
    Yarchuk O, Jacques N, Guillerez J et al. Interdependence of translation, transcription and mRNA degradation in the lacZ gene. J Molec Biol 1992; 226:581–596.Google Scholar
  157. 157.
    McCormick JR, Zengel JM, Lindahl L. Correlation of translation efficiency with the decay of lacZ mRNA in E. coli. J Molec Biol 1994; 239:608–622.Google Scholar
  158. 158.
    Emory SA, Bouvet P, Belasco JG. A 5′ terminal stem-loop structure can stabilise mRNA in E. coli. Genes & Development 1992; 6:135–148.Google Scholar
  159. 159.
    Ehretsmann CP, Carpoussis AJ, Krisch HM. mRNA degradation in procaryotes. FASEB J 1992; 6:3186–3192.Google Scholar
  160. 160.
    Cole JR, Nomura M. Changes in the half-life of ribosomal protein messenger RNA caused by translational repression. J Molec Biol 1986; 188:383–392.Google Scholar
  161. 161.
    Singer P, Nomura M. Stability of ribosomal protein mRNA and translational feedback regulation in E. coli. Molec Gene Genet 1985; 199:543–546.Google Scholar
  162. 162.
    Rapaport LR, Mackie GA. Influence of translational efficiency on the stability of the mRNA for ribosomal protein S20 in E. coli. J Bact 1994; 176:992–998.Google Scholar
  163. 163.
    Belasco J, Higgins C. Mechanisms of mRNA decay in bacteria: a perspective. Gene 1988; 72:15–23.Google Scholar
  164. 164.
    Régnier P, Hajnsdorf E. Decay of mRNA encoding ribosomal protein S15 of E. coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilising stem and loop structure. J Molec Biol 1994; 217:283–292.Google Scholar
  165. 165.
    Bremer H, Dennis PP. Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt, ed. Escherichia Coli and Salmonella Typhimurium. Cellular and Molecular Biology. Washington, DC: American Society for Microbiology, 1987:1527–1542.Google Scholar
  166. 166.
    Gaal T, Gourse RL. Guanosine 3′-diphosphate 5′-diphosphate is not required for growth rate-dependent control of rRNA synthesis in Escherichia coli. Proc Natl Acad Sci USA 1990; 87:5533–5537.Google Scholar
  167. 167.
    Ross W, Thompson JF, Newlands JT et al. E. coli Fis protein activates ribosomal RNA transcription in vitro and in vivo. EMBO J 1990; 9:3733–3742.Google Scholar
  168. 168.
    Ninnemann O, Koch C, Kahmann R. The E. coli fis promoter is subject to stringent control and autoregulation. EMBO J 1992; 11:1075–1083.Google Scholar
  169. 169.
    Cole JR, Nomura M. Translation regulation is responsible for growth-rate-dependent and stringent control of the synthesis of ribosomal proteins L11 and L1 in E. coli. Proc Natl Acad Sci USA 1986; 83:4129–4133.Google Scholar
  170. 170.
    Lindahl L, Zengel JM. Ribosomal genes in Escherichia coli. Ann Rev Genet 1986; 20:297–326.Google Scholar
  171. 171.
    Lindahl L, Zengel J. Autogenous control is not sufficient to ensure steady-state growth rate-dependent regulation of the S10 ribosomal Operon of Escherichia coli. J Bacteriol 1990; 172:305–309.Google Scholar
  172. 172.
    Nilsson G, Belasco JG, Cohen SN et al. Growth rate dependent regulation of mRNA stability in E. coli. Nature 1984; 312:75–77.Google Scholar
  173. 173.
    Emory SA, Belasco JG. The ompA untranslated RNA segment functions in E. coli as growth rate mRNA stabiliser whose activity is unrelated to translation efficiency. J Bact 1990; 172:4472–4481.Google Scholar
  174. 174.
    Jacques N, Guillerez J, Dreyfus M. Culture conditions differentially affect the translation of individual Escherichia coli mRNAs. J Molec Biol 1992; 226:597–608.Google Scholar
  175. 175.
    Steitz TA. Similarities and differences between RNA and DNA recognition by proteins. In: Gesteland RF, Atkins JF, eds. The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1993:219–237.Google Scholar
  176. 176.
    Narayan P, Rottman F. Methylation of mRNA. In: Meister A, ed. Advances in enzymology. New York: John Wiley & Sons, 1992:255–285.Google Scholar
  177. 177.
    Björk GR. Biosynthesis and function of modified nucleosides. In: Söll D, Rajbhandary UL, eds. tRNA. Washington, DC: American Society for Microbiology, 1995:165–205.Google Scholar
  178. 178.
    Szostack JW, Ellington AD. In vitro selection of functional RNA sequences. In: Gesteland RF, Atkins JF, eds. The RNA world. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1993:511–533.Google Scholar
  179. 179.
    Lorsch JR, Szostack JW. In vitro selection of RNA haptamers specific for cyanocobalamin. Biochemistry 1994; 33:973–982.Google Scholar
  180. 180.
    Thomas MS, Bedwell DM, Nomura M. Regulation of a Operon gene expression in E. coli. A novel form of translational coupling. J Molec Biol 1987; 196:333–345.Google Scholar
  181. 181.
    Jakubowski H, Goldman E. Quantities of individual aminoacyl-tRNA families and their turnover in E. coli. J Bacteriol 1984; 158:769–776.Google Scholar
  182. 182.
    Vartikar JV, Draper DE. S4–16S ribosomal RNA complex. Binding constant measurement and specific recognition of a 460-nucleotide region. J Molec Biol 1989; 209:221–234.Google Scholar
  183. 183.
    Schwartzbauer J, Craven GR. Apparent association constants for E. coli ribosomal proteins S4, S7, S8, S15, S17 and S20. Nucleic Acids Res 1981; 9:2223–2237.Google Scholar
  184. 184.
    Dolan K, Oliver DB. Characterisation of E. coli SecA protein binding site on its mRNA involved in autoregulation. J Biol Chem 1991; 266:23329–23333.Google Scholar
  185. 185.
    Calogero RA, Pon CL, Canonaco MA et al. Selection of the mRNA translation initiation region by E. coli ribosomes. Proc Natl Acad Sci USA 1988; 85:6427–6431.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Mathias Springer

There are no affiliations available

Personalised recommendations