Cell Division

  • Lawrence I. Rothfield
  • Jorge Garcia-Lara


The E. coli division cycle must be regulated both temporally and topologically. Temporal regulation is required to assure that septation does not occur until chromosome replication has been completed and until the two daughter chromosomes have been segregated to opposite ends of the cell. Topological regulation is required to assure that the septum is formed at its proper midcell location and not at eccentric sites that would lead to formation of anucleate cells. A considerable amount is known about genes involved in these aspects of cell division. However, surprisingly little is understood about the regulation of these processes and studies of this important problem are still in their infancy. Although there is reason to believe that the expression of important cell division genes is subject to regulatory control, it is not known whether orderly progression through the cell cycle is mediated by changes in gene expression. On the other hand, it is clear that regulation of gene expression does play an important role in modulating the response of the division process to physiological aberrations such as interference with DNA replication.


Cell Division Division Process Chromosome Replication Division Site Extracellular Factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirota Y, Ryter A, Jacob F. Thermosensitive mutants of E. coli affected in the process of DNA synthesis and cellular division. Cold Spring Harbor Symp Quant Biol 1968; 33:677–693.Google Scholar
  2. 2.
    Weigand RA, Vinci KD, Rothfield LI. Morphogenesis of the bacterial division septum: a new class of septation-defective mutants. Proc Natl Acad Sci USA 1976; 73:1882–1886.Google Scholar
  3. 3.
    Chakraborti AS, Ishidate K, Cook WR, Zrike J, Rothfield LI. Accumulation of a murein-membrane attachment site fraction when cell division is blocked in IkyD and cha mutants of Salmonella typhimurium and Escherichia coli. J Bacteriol 1986; 168:1422–1429.Google Scholar
  4. 4.
    Howe WE, Mount DW. Production of cells without deoxyribonucleic acid during thymine starvation of lexA cultures of Escherichia coli. J Bacteriol 1975; 124:1113–1121.Google Scholar
  5. 5.
    Tang M-S, Helmstetter CE. Coordination between chromosome replication and cell division in Escherichia coli. J Bacteriol 1980; 141:1148–1156.Google Scholar
  6. 6.
    Jaffé A, D’Ari R, Norris V. SOS-independent coupling between DNA replication and cell division in Escherichia coli. J Bacteriol 1986; 165:66–71.Google Scholar
  7. 6a.
    Inouye M. Unlinking of cell division from DNA replication in a temperature-sensitive DNA synthesis mutant of Escherichia coli. J Bacteriol 1969; 99:842–850.Google Scholar
  8. 6b.
    Hirota Y, Jacob F, Ryter A, Buttin G, Nakai T. On the process of cellular division in E. coli. I. Asymmetric cell division and production of DNA-less bacteria. J Molec Biol 1968; 35:175–192.Google Scholar
  9. 7.
    Donachie WD. The cell cycle of Escherichia coli. Annual Review of Microbiology 1993; 47:199–230.Google Scholar
  10. 8.
    Woldringh CL, Mulder E, Huls PG, Vischer NOE. Toporegulation of bacterial division according to the nucleoid occlusion model. Res Microbiology 1991; 142:309–320.Google Scholar
  11. 9.
    Bi E, Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature 1991; 354:161–164.Google Scholar
  12. 10.
    Spratt BG. Distinct penicillin binding proteins involved in the division, elongation and shape of Escherichia coli. Proc Natl Acad Sci USA 1975; 72:2999–3003.Google Scholar
  13. 11.
    Guzman, L-M, Barondess JJ, Beckwith J. FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. J Bacteriol 1992; 174:7716–7728.Google Scholar
  14. 12.
    Carson MJ, Barondess J, Beckwith M. The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations. J Bacteriol 1991; 173:2187–2195.Google Scholar
  15. 13.
    Wang H, Gayda RC. Quantitative determination of FtsA at different growth rates in Escherichia coli using monoclonal antibodies. Molec Microbiol 1992; 6:2517–2524.Google Scholar
  16. 14.
    Bowler DL, Spratt BG. Membrane topology of penicillin-binding protein 3 of Escherichia coli. Molec Microbiol 1989; 3:1277–1286.Google Scholar
  17. 15.
    Ikeda M, Sato T, Wachi M, Jung HK, Ishino F, Kobayashi Y, Matsuhashi M. Structural similarity among Escherichia coli FtsW and RodA proteins and Escherichia coli SpoVE protein, which function in cell division, cell elongation, and spore formation respectively. J Bacteriol 1989; 171: 6375–6378.Google Scholar
  18. 16.
    Pla J, Dopazo A, Vicente M. The native form of FtsA, a septal protein of Escherichia coli, is located in the cytoplasmic membrane. J Bacteriol 1990; 172:5097–5102.Google Scholar
  19. 17.
    Sanchez M, Valencia A, Ferrandiz M-J, Sander C, Vicente M. Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. EMBO J 1994; 13:4919–4925.Google Scholar
  20. 18.
    Taschner PEM, Huls PG, Pas E, Woldringh CL. Division behavior and shape changes in isogenic fisZ, fisQ, fisA, pbpB, and ftsE cell divisipn mutants of Escherichia coliduring temperature shift experiments. J Bacteriol 1988; 170:1533–1540.Google Scholar
  21. 19.
    Begg K, Donachie W. Cell shape and division in Escherichia coli: experiments with shape and division mutants. J Bacteriol 1985; 163:615–622.Google Scholar
  22. 19a.
    Khattar M, Begg K, Donachie W. Identification of FtsW and characterization of a new fisW division mutant of Escherichia coli. J Bacteriol 1994; 176:7140–7147.Google Scholar
  23. 20.
    Mukherjee A, Lutkenhaus J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 1994; 176:2754–2758.Google Scholar
  24. 21.
    Bramhill D, Thompson C. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci USA 1994; 91:5813–5817.Google Scholar
  25. 22.
    de Boer P, Crossley R, Rothfield L. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 1992; 359:254–256.Google Scholar
  26. 23.
    RayChaudhuri D, Park JT. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 1992; 359:251–254.Google Scholar
  27. 24.
    Mukherjee A, Dai K, Lutkenhaus J. Escherichia coli cell-division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci USA 1993; 90:1053–1057.Google Scholar
  28. 25.
    Aldea M, Garrido T, Pla J, Vicente M. Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promotors. EMBO J 1990; 9:3787–3794.Google Scholar
  29. 26.
    Ward JE, Lutkenhaus J. Overproduction of FtsZ induces minicell formation in Escherichia coli. Cell 1985; 42:941–949.Google Scholar
  30. 27.
    Tétart F, Bouché J-P. Regulation of the expression of the cell cycle gene ftsZ by DicF antisense RNA. Division does not require a fixed number of FtsZ molecules. Molec Microbiol 1992; 6:615–620.Google Scholar
  31. 28.
    Tétart F, Albigot R, Conter A, Mulder E, Bouché J-P. Involvement of FtsZ in coupling of nucleoid separation with septation. Molec Microbiol 1992; 6:621–627.Google Scholar
  32. 29.
    Dai K, Lutkenhaus J. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 1992; 174:6145–6151.Google Scholar
  33. 30.
    Dewar SJ, Begg KJ, Donachie WD. Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J Bacteriol 1992; 174:6314–6316.Google Scholar
  34. 31.
    Ishino F, Matsuhashi M. Peptidoglycan synthetic activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. Biochem Biophys Res Commun 1981; 101:905–911.Google Scholar
  35. 32.
    Park JT, Burman L. A new penicillin with a unique mode of action. Biochem Biophys Res Commun 1973; 51:863–868.Google Scholar
  36. 32a.
    Dai K, Xu Y, Lutkenhaus J. Cloning and characterization of ftsN, an essential cell division gene in Escherichia coli isolated as a multicopy suppressor of ftsA12(Ts). J Bacteriol 1993; 175:3790–3797.Google Scholar
  37. 33.
    Gibbs TW, Gill DR, Salmond GPC. Localised mutagenesis of the ftsYEX operon: conditionally lethal missense substitutions in the FtsE cell division protein of Escherichia coli are similar to those found in the cystic fibrosis transmembrane conductance regulator protein (CFTR) of human patients. Mol Gen Genet 1992; 234:121–128.Google Scholar
  38. 34.
    Garrido T, Sànchez M, Placios P, Aldea M, Vicente M. Transcription of fisZ oscillates during the cell cycle of Escherichia coli. EMBO J 1993; 12:3957–3965.Google Scholar
  39. 34a.
    Mukherjee A, Donachie W. Differential translation of cell division proteins. J Bacteriol 1990; 172:6106–6111.Google Scholar
  40. 35.
    Zhou P, Helmstetter CE. Relationship between ftsZ gene expression and chromosome replication in Escherichia coli. J Bacteriol 1994; 176: 6100–6106.Google Scholar
  41. 36.
    Dewar SJ, Donachie WD. Regulation of expression of the fisA cell division gene by sequences in upstream genes. J Bacteriol 1990; 172: 6611–6614.Google Scholar
  42. 37.
    Wang X, de Boer PAJ, Rothfield LI. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J 1991; 10:3363–3372.Google Scholar
  43. 38.
    Robinson AC, Kenan DJ, Hatfull GF, Sullivan NF, Spiegelberg R, Donachie WD. DNA sequence and transcriptional organization of essential cell division genes fisQ and fisA of Escherichia coli: Evidence for overlapping transcriptional units. J Bacteriol 1984; 160:546–555.Google Scholar
  44. 39.
    Robinson AC, Kenan DJ, Sweeney J, Donachie WD. Further evidence for overlapping transcriptional units in an Escherichia coli cell envelope-cell division gene cluster: Dna sequence and transcriptional organization of the ddl ftsQ region. J Bacteriol 1986; 167:809–817.Google Scholar
  45. 40.
    Yi, Q-M, Rockenbach S, Ward JE, Lutkenhaus J. Structure and expression of the cell division genes fisQ, ftsA and ftsZ. J Mol Biol 1985; 184:399–412.Google Scholar
  46. 41.
    Dewar S, Donachie W. Antisense transcription of the ftsA-ftsZ gene junction inhibits cell division in E. coli. J Bacteriol 1993; 175:7097–7101.Google Scholar
  47. 42.
    de Boer PAJ, Crossley RE, Rothfield LI. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc Natl Acad Sci USA 1990; 87:1129–1133.Google Scholar
  48. 43.
    Bi E, Lutkenhaus J. Interaction between the min locus and ftsZ. J Bacteriol 1990; 172:5610–5616.Google Scholar
  49. 44.
    Cross FR. CLN- and CDC28-dependent stimulation of CLN1 and CLN2 RNA levels: implications for regulation by alpha-factor and by cell cycle progression. Cold Spring Harbor Symp on Quantitative Biology 1991; LVL1–8.Google Scholar
  50. 45.
    García-Lara J, Shang LH, Rothfield LI. An extracellular factor regulates expression of sdiA, a. transcriptional activator of cell division genes in E. coli. 1995; (submitted).Google Scholar
  51. 46.
    Swift S, Bainton NJ, Winson MK. Gram-negative bacterial communication by N-acyl homoserine lactones: A universal language? Trends in Microbiology 1994; 2:193–198.Google Scholar
  52. 47.
    Kaiser D, Losick R. How and why bacteria talk to each other. Cell 1993; 73:873–885.Google Scholar
  53. 48.
    Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria:the LuxR-LuxI family of density-responsive transcriptional regulators. J Bacteriol 1994; 176:269–275.Google Scholar
  54. 49.
    Piper KR, Beck vov Bodman S, Farrand SK. Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature (London) 1993; 362:448–450.Google Scholar
  55. 50.
    Zhang L, Murphy PJ, Kerr A, Tate ME. Agrobacterium conjugation and gene regulation by N-acyl-homoserine lactones. Nature (London) 1993; 362:446–448.Google Scholar
  56. 51.
    Pirhonen M, Flego D, Heikinheimo R, Palva ET. A small diffusible molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO J 1993; 12:2467–2476.Google Scholar
  57. 52.
    Gambello MJ, Igiewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 1991; 173:3000–3009.Google Scholar
  58. 53.
    Passador LC, JM, Gambello MJ, Rust L, Igiewski BH. Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 1993; 260:1127–1130.Google Scholar
  59. 54.
    Stevens AM, Dolan KM, Greenberg EP. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region. Proc Natl Acad Sci USA 1994; 91:12619–12623.Google Scholar
  60. 55.
    Aldea M, Hernández-Chico C, de la Campa AG, Kushner SR, Vicente M. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol 1988; 170:5169–5176.Google Scholar
  61. 56.
    Aldea M, Garrido T, Hernández-Chico C, Vicente M, Kushner SR. Induction of a growth-phase-dependent promoter triggers transcription of bolA, an Escherichia colimorphogene. EMBO 1989; 8:3923–3931.Google Scholar
  62. 56a.
    Donachie W, Sullivan N, Kenan D, Derbyshire V, Begg K, Kagan-Zur V. Genes and cell division in Escherichia coli. In: Cahloupka J, Kotyk A, Streiblova E, eds. Progress in Cell Cycle Controls. Prague: Czechoslovak Acad Sci, 1983:28–33.Google Scholar
  63. 57.
    Fukuda R, Nishimura A, Serizawa H. Genetic mapping of the Escherichia coli gene for the stringent starvation protein. Mol Gen Genet 1988; 211.Google Scholar
  64. 58.
    Williams MD, Ouyang TX, Flickinger MC. Starvation-induced expression of SspA and SspB: the effects of a null mutation in sspA on Escherichia coli protein synthesis and survival during growth and prolonged starvation. Molec Microbiol 1994; 11:1029–1043.Google Scholar
  65. 59.
    Lange R, Hengge-Aronis R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Molec Microbiol 1991; 5:49–59.Google Scholar
  66. 60.
    Bohannon DE, Connell N, Keener J, Tormo A, Espinosa-Urgel M, Zambranao MM, Kolter R. Stationary-phase-inducible ‘gearbox’ promoters: differential effects of katF mutations and role of Sigma 70. Mol Microbiol 1991; 1:195–201.Google Scholar
  67. 61.
    Lange R, Hengge-Aronis R. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 1991; 173:4474–4481.Google Scholar
  68. 62.
    Masters M, Paterson T, Popplewell AG, Owen-Hughes T, Pringle JH, Begg KJ. The effect of DnaA protein levels and the rate of initiation at oriC on transcription originating in the fisQ and fisA genes: In vivo experiments. Mol Gen Genet 1989; 216:475–483.Google Scholar
  69. 63.
    Bouché F, Bouché J-P. Genetic evidence that DicF, a second division inhibitor encoded by the Escherichia coli dicB Operon, is probably RNA. Molec Microbiol 1989; 3:991–994.Google Scholar
  70. 64.
    Faubladier M, Cam K, Bouché J-P. Escherichia coli cell division inhibitor DicF-RNA of the dicB Operon. Evidence for its generation in vivo by transcription termination and by RNase III and RNase E-dependent processing. J Mol Biol 1990; 212:461–471.Google Scholar
  71. 65.
    Wachi M, Matsuhashi M. Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J Bacteriol 1989; 171:3123–3127.Google Scholar
  72. 66.
    Dewar SJ, Kagan-Zur V, Begg KJ, Donachie WD. Transcriptional regulation of cell division genes in Escherichia coli. Molec Microbiol 1989; 3:1371–1377.Google Scholar
  73. 67.
    Robin A, Joseleau-Petit D, D’Ari R. Transcription of the fisZ gene and cell division in Escherichia coli. J Bacteriol 1990; 172:1392–1399.Google Scholar
  74. 68.
    Mizusawa S, Gottesman S. Protein degradation in Escherichia coli: the lon gene controls the stability of sulA protein. Proc Natl Acad Sci USA 1983; 80:358–62.Google Scholar
  75. 69.
    Bi E, Lutkenhaus J. Cell division inhibitors, SulA and MinCD, prevent localization of FtsZ. J Bacteriol 1993; 175:1118–1125.Google Scholar
  76. 70.
    George J, Castellazzi M, Buttin G. Prophage induction and cell division in E. coli. III. Mutations sfiA and sfiB restore division in tif and lon strains and permit the expression of mutator properties of tif. Molec Gen Genetics 1975; 140:309–332.Google Scholar
  77. 71.
    Johnson BF, Greenberg J. Mapping of sul, the suppressor of lon in Escherichia coli. J Bacteriol 1975; 122:570–574.Google Scholar
  78. 72.
    Brody H, Greener A, Hill CW. Excision and reintegration of Escherichia coli K-12 chromosomal element el4. J Bacteriol 1985; 161:1112–1117.Google Scholar
  79. 73.
    Maguin E, Brody H, Hill CW, D’Ari R. SOS-associated division inhibition gene sfiC is part of excisable element e14 in Escherichia coli. J Bacteriol 1986; 168:464–466.Google Scholar
  80. 74.
    van de Putte P, Plasterk R, Kuijpers A. A Mu gin complementing function and an invertible DNA region in Escherichia coli K-12 are situated in genetic element el4. J Bacteriol 1984; 158:517–522.Google Scholar
  81. 75.
    Maguin E, Lutkenhaus J, D’Ari R. Reversibility of SOS-associated division inhibition in Escherichia coli. J Bacteriol 1986; 166:733–738.Google Scholar
  82. 76.
    de Boer PAJ, Crossley RE, Rothfield LI. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in Escherichia coli. Cell 1989; 56:641–649.Google Scholar
  83. 77.
    Béjar S, Bouché F, Bouché J-P. Cell division inhibition gene dicB is regulated by a locus similar to lambdoid bacteriophage immunity loci. Mol Gen Genet 1988; 212:11–19.Google Scholar
  84. 78.
    Faubladier M, Bouché J-P. Division inhibition gene dicF of Escherichia coli reveals a widespread group of prophage sequences in bacterial genomes. J Bacteriol 1994; 176:1150–1156.Google Scholar
  85. 79.
    Rothfield L. Bacterial chromosome segregation. Cell 1994; 77:963–966.Google Scholar
  86. 80.
    Ogura T, Hiraga S. Mini-F plasmid genes that couple cell division to plasmid proliferation. Proc Natl Acad Sci USA 1983; 80:4784–4788.Google Scholar
  87. 80a.
    Maki S, Takiguchi S, Miki T, Horiuchi T. Modulation of DNA super-coiling activity of Escherichia coli DNA gyrase by F plasmid proteins:an-tagonistic actions of LetA (CcdA) and LetD (CcdB) proteins. J Biol Chem 1992; 267:12244–51.Google Scholar
  88. 80b.
    Bernard P, Kezdy KE, Van Melderen L, Steyaert J, Wyns L, Pato ML, Higgins PN, Couturier M. The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. J Mol Biol 1993; 234:534–41.Google Scholar
  89. 80c.
    Miki T, Park JA, Nagao K, Murayama N, Horiuchi T. Control of segregation of chromosomal DNA by sex factor F in Escherichia coli. Mutants of DNA gyrase subunit A suppress letD (ccdB) product growth inhibition. J Mol Biol 1992; 225:39–52.Google Scholar
  90. 80d.
    Bernard P, Couturier M. Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 1992; 226:735–45.Google Scholar
  91. 81.
    Van Melderen I, Bernard P, Couturier M. Lon-dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid-free segregant bacteria. Mol Microbiol 1994; 11:1151–1157.Google Scholar
  92. 82.
    Oliver DB, Beckwith J. An E. coli mutant pleioitropically defective in the export of secreted proteins. Cell 1982; 25:165–772.Google Scholar
  93. 83.
    Georgopolous CP, Eisen H. Bacterial mutants that block phage assembly. J Supramolec Struct 1974; 2:349–359.Google Scholar
  94. 84.
    Komano T, Utsumi R, Kawamukai M. Functional analysis of the fic gene involved in regulation of cell division. Res Microbiol 1991; 142:269–277.Google Scholar
  95. 85.
    Kren B, Fuchs JA. Characterization of the fisB gene as an allele of the nrdB gene in Escherichia coli. J Bacteriol 1987; 169:14–18.Google Scholar
  96. 86.
    Taschner PEM, Verest JGJ, Woldringh CL. Genetic and morphological characterization of fisB and nrdB mutants of Escherichia coli. J Bacteriol 1987; 169:19–25.Google Scholar
  97. 87.
    Herman C, Ogura T, Tomoyasu HS, Akiyama Y, Ito K, Thomas R, D’Ari R, Bouloc P. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc Natl Acad Sci USA 1993; 90:10861–10865.Google Scholar
  98. 88.
    Miyoshi Y, Yamagata H. Sucrose-dependent spectinomycin-resistant mutants of Escherichia coli. J Bacteriol 1976; 125:142–148.Google Scholar
  99. 89.
    Vinella D, D’Ari R. Thermoinducible filamentation in Escherichia coli due to an altered RNA polymerase beta subunit is suppressed by high levels of ppGpp. J Bacteriol 1994; 176:966–72.Google Scholar
  100. 90.
    Leclerc G, Sirard C, Drapeau GR. The Escherichia coli cell division mutation fisM1 is in serU. J Bacteriol 1989; 171:2090–2095.Google Scholar
  101. 91.
    Chen MX, Bouquin V, Norris V, Casaregola S, Seror SJ, Holland IB. A single base change in the acceptor stem of tRNA3 Leu confers resistance of Escherichia coli to the calmodulin inhibitor 48/80. EMBO J 1991; 10:3113–3122.Google Scholar
  102. 92.
    Meide VD, Borman THPH, Van Kimmenade AMA, Putte Vd, Bosch L. Elongation factor Tu isolated from Escherichia coli mutants altered in tufA and tuB. Proc Natl Acad Sci USA 1980; 77:3922–3926.Google Scholar
  103. 93.
    Vinella D, Joseleau-Petit D, Thevenet D, Bouloc P, D’Ari R. Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression. J Bacteriol 1993; 175:6704–6710.Google Scholar
  104. 94.
    Kepes F, Kepes A. Postponement of cell division by nutritional shift-up in Escherichia coli. J Gen Microbiol 1985; 131:677–685.Google Scholar
  105. 95.
    Kepes F, D’Ari R. Involvement of FtsZ protein in shift-up induced division delay in Escherichia coli. J Bacteriol 1987; 169:4036–4040.Google Scholar
  106. 96.
    Miller JH. Experiments in Molecular Genetics. Cold Spring Harbor Harbor, NY: Cold Spring Harbor Laboratory, 1972.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Lawrence I. Rothfield
  • Jorge Garcia-Lara

There are no affiliations available

Personalised recommendations