Control of rRNA and ribosome synthesis

  • Richard L. Gourse
  • Wilma Ross


In rapidly growing bacteria, the synthesis of ribosomes accounts for the cell’s single largest expenditure of biosynthetic energy. Under these conditions, the cell contains more than 70,000 ribosomes, each of which is constructed from more than 50 ribosomal proteins and 3 ribosomal RNAs.


Stringent Response Amino Acid Starvation rRNA Operon Stringent Control rRNA Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nomura M, Gourse RL, Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem 1984; 53:75–117.Google Scholar
  2. 2.
    Draper DE. Translational regulation of ribosmal proteins in Escherichia coli: Molecular mechanisms. In: Ilan J, ed. Translation of Gene Expression. New York: Plenum Press, 1987:1–26.Google Scholar
  3. 3.
    Zengel JM, Lindahl L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog. Nucl Acid Res Molec Biol 1994; 47:331–370.Google Scholar
  4. 4.
    Lindahl L, Zengel J. Ribosomal Genes in Escherichia coli. Annu Rev Genet 1986; 20:297–326.Google Scholar
  5. 5.
    Yates JL, Nomura M. E. coli ribosomal protein L4 is a feedback regulatory protein. Cell 1980; 21:517–522.Google Scholar
  6. 6.
    Freedman LP, Zengel JM, Archer RH, Lindahl L. Autogenous control of the S10 ribosomal protein operon of Escherichia coli: genetic dissection of transcriptional and post-transcriptional regulation. Proc Natl Acad Sci USA 1987; 84:6516–6520.Google Scholar
  7. 7.
    Gregory RJ, Cahill PBF, Thurlow DL, Zimmermann RA. Interaction of Escherichia coli ribosomal protein S8 with its binding sites in ribosomal RNA and messenger RNA. J Mol Biol 1988; 204:295–307.Google Scholar
  8. 8.
    Cerretti DP, Mattheakis LC, Kearney KR, Vu L, Nomura M. Translational regulation of the spc operon in Escherichia coli. Identification and structural analysis of the target site for S8 repressor protein. J Mol Biol 1988; 204:309–329.Google Scholar
  9. 9.
    Mattheakis LC, Nomura M. Feedback regulation of the spc operon in Escherichia coli: Translational coupling and mRNA processing. J Bacteriol 1988; 170:4484–4492.Google Scholar
  10. 10.
    Mattheakis LC, Vu L, Sor F, Nomura M. Retroregulation of the synthesis of ribosomal proteins L14 and L24 by feedback repressor S8 in Escherichia coli. Proc Natl Acad Sci. USA 1989; 86:448–452.Google Scholar
  11. 11.
    Saito Y, Mattheakis LC, Nomura M. Post-transcriptional regulation of the str operon in Escherichia coli. Ribosomal protein S7 inhibits coupled translation of S7 but not its independent translation. J Mol Biol 1994; 235:111–124.Google Scholar
  12. 12.
    Cole JR, Nomura M. Translational regulation is responsible for growth-rate-dependent and stringent control of the synthesis of ribosomal proteins L11 and L1 in Escherichia coli. Proc Natl Acad Sci USA 1986; 83:4129–4133.Google Scholar
  13. 13.
    Maaloe O, Kjeldgaard NO. Control of macromolecular synthesis: a study of DNA, RNA, and protein synthesis in bacteria. New York: Benjamin, 1966.Google Scholar
  14. 14.
    Gausing K. Regulation of ribosome biosynthesis in E. coli. In: Chambliss G et al, ed. Ribosomes: Structure, Function, and Genetics. Baltimore: University Park Press, 1980:693–718.Google Scholar
  15. 15.
    Stent GS, Brenner S. A genetic locus for the regulation of ribonucleic acid synthesis. Proc Natl Acad Sci USA 1961; 47:2005–2014.Google Scholar
  16. 16.
    Jinks-Robertson S, Nomura M. Ribosomes and tRNA. In: Neidhardt FC, ed. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, DC: American Society for Microbiology, 1987:1358–1385.Google Scholar
  17. 17.
    Brosius J, Dull TJ, Sleeter DD, Noller HF. Gene organization and primary structure of of a ribosomal RNA Operon from E. coli. J Mol. Biol 1980; 148:107–127.Google Scholar
  18. 18.
    Blattner FR, Burland V, Plunkett G, Sofia HJ, Daniels DL. Analysis of the Escherichia coli genome. IV. DNA sequence of the region from 89.2 to 92.8 minutes. Nucl Acids Res 1993; 21:5408–5417.Google Scholar
  19. 19.
    Carbon P, Ehresmann C, Ehresmann B, Ebel J-P. The complete nucleotide sequence of 16-S RNA from Escherichia coli. Eur. J Biochem 1978; 100:399–410.Google Scholar
  20. 20.
    Condon C, Philips J, Fu Z-Y, Squires C, Squires CL. Comparison of the expression of the seven ribosomal RNA Operons in Escherichia coli. EMBO J 1992; 11:4175–4185.Google Scholar
  21. 21.
    deBoer HA, Nomura M. In vivo transcription of rRNA operons in Escherichia coli initiates with purine nucleotide trophosphates at the first promoter and with CTP at the second promoter. J Biol Chem 1979; 254:5609–5612.Google Scholar
  22. 22.
    Lund E, Dahlberg JE. Initiation of Escherichia coli ribosomal RNA synthesis in vivo. Proc Natl Acad Sci USA 1979; 76:5480–5484.Google Scholar
  23. 23.
    Sarmientos P, Cashel M. Carbon starvation and growth rate-dependent regulation of the Echerichia coli ribosomal RNA promoter: differential control of dual promoters. Proc Natl Acad Sci USA 1983; 80:7010–7013.Google Scholar
  24. 24.
    Sarmientos P, Contente S, Chinali G, Cashel M. Ribosomal RNA operon promoters P1 and P2 show different regulatory responses. In: Hamer DH, Rosenberg M. eds. Gene Expression. New York: Alan R. Liss, 1983:65–74.Google Scholar
  25. 25.
    Thayer G, Brosius J. In vivo transcription from deletion mutations introduced near Escherichia coli ribosomal RNA promoter P2. Mol Gen Genet 1985; 199:55–58.Google Scholar
  26. 26.
    Gourse RL, deBoer HA, Nomura M. DNA determinants of rRNA synthesis in E. coli: growth rate dependent regulation, feedback inhibition, upstream activation, and anti-termination. Cell 1986; 44:197–205.Google Scholar
  27. 27.
    Lukacsovich T, Gaal T, Venetianer P. The structural basis of the in vivo strength of the rRNA P2 promoter of Escherichia coli. Gene 1989; 78:189–194.Google Scholar
  28. 28.
    Gafny R, Cohen S, Nachaliel N, Glaser G. Isolated P2 rRNA promoters of Escherichia coli are strong promoters that are subject to stringent control. J Mol Biol 1994; 243:152–156.Google Scholar
  29. 29.
    Komine Y, Adachi T, Inokuchi H, Ozeki H. Genomic organization and physical mapping of the transfer RNA geens in Escherichia coli K12. J Mol Biol 1990; 212:579–598.Google Scholar
  30. 30.
    McClure WR. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem 1985; 54:171–204.Google Scholar
  31. 31.
    Gaal T, Barkei J, Dickson RR, deBoer HA, deHaseth PL, Alavi H, Gourse RL. Saturation mutagenesis of an E. coli rRNA promoter and initial characterization of promoter variants. J Bacteriol 1989; 171:4852–4861.Google Scholar
  32. 32.
    Dickson RR, Gaal T, deBoer HA, deHaseth PL, Gourse, R.L. Identification of promoter mutants defective in growth rate dependent regulation of rRNA transcription in Escherichia coli. J Bacteriol 1989; 171:4862–4870.Google Scholar
  33. 33.
    Gourse RL. Visualization and quantitative analysis of complex formation between E. coli RNA polymerase and an rRNA promoter in vitro. Nucl Acids Res 1988; 16:9789–9809.Google Scholar
  34. 34.
    Leirmo S, Gourse RL. Factor-independent activation of rRNA transcription. I. Kinetic analysis of the roles of the upstream activator region and supercoiling on the rrnB P1 promoter in vitro. J Mol Biol 1991; 220:555–568.Google Scholar
  35. 35.
    Ohlsen K, Gralla JD. Interrelated effects of DNA supercoiling, ppGpp, and low salt on melting within the Escherichia coli ribosomal RNA rrnB P1 promoter. Mol Microbiol 1992; 6:2243–2251.Google Scholar
  36. 36.
    Ohlsen KL, Gralla JD. DNA melting within stable closed complexes at the Escherichia coli rrnB P1 promoter. J Biol Chem 1992; 267: 19813–19818.Google Scholar
  37. 37.
    Borukhov S, Sagitov V, Josaitis CA, Gourse RL, Goldfarb A. Two modes of transcription initiation in vitro at the rrnB P1 promoter of Escherichia coli. J Biol Chem 1993; 268:23477–23482.Google Scholar
  38. 38.
    Langert W, Meuthen M, Mueller K. Functional characteristics of the rrnD promoters of Escherichia coli. J Biol Chem 1991; 266:21608–21615.Google Scholar
  39. 39.
    Kupper H, Contreras R, Khorana HG, Landy A. In: Losick R, Chamberlin M. ed. RNA polymerase. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1976:473–484.Google Scholar
  40. 40.
    Petho A, Belter J, Boros I, Venetianer P. The role of the upstream sequences in determining the strength of an rRNA promoter of E. coli. Biochim Biophys Acta 1986; 866:37–43.Google Scholar
  41. 41.
    Zacharias M, Goringer HU, Wagner R. Analysis of the Fis-dependent and Fis-independent transcription activation mechanisms of the Escherichia coli ribosomal RNA P1 promoter. Biochem 1992; 31:2621–2268.Google Scholar
  42. 42.
    Sander P, Langert W, Mueller K. Mechanisms of upstream activation of the rrnD promoter P1 of Escherichia coli. J Biol Chem 1993; 268:16907–16916.Google Scholar
  43. 43.
    Rao L, Ross W, Leirmo S, Schlax PJ, Gourse RL. Factor-independent activation of rrnB P1: An “extended” promoter with an upstream element that dramatically increases promoter strength. J Mol Biol 1994; 235:1421–1435.Google Scholar
  44. 44.
    . Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K, Gourse RL. A third recognition element in bacterial promoters: DNA binding by the a subunit of RNA polymerase. Science 1993; 262: 1407–1413.Google Scholar
  45. 45.
    Newlands JT, Ross W, Gosink K, Gourse RL. Factor-independent activation of rRNA transcription. II. Characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with E. coli RNA polymerase. J Mol Biol 1991; 220:569–583.Google Scholar
  46. 46.
    . Dombroski AJ, Walter WA, Record MT Jr, Siegele D, Gross CA. Polypeptides Containing Highly Conserved Regions of Transcription Initiation Factor σ70 Exhibit Specificity of Binding to Promoter DNA. Cell 1992; 70:501–512.Google Scholar
  47. 47.
    . Russo F, Silhavy T. Alpha: the Cinderella subunit of RNA polymerase. J Biol Chem 1992; 267:14515–14518.Google Scholar
  48. 48.
    Blatter EE, Ross W, Tang H, Gourse RL, Ebright RH. Domain organization of RNA polymerase a subunit: C-terminal 85 amino acids constitute an independently folded domain capable of dimerization and DNA binding. Cell 1994; 78:889–896.Google Scholar
  49. 48a.
    Gaal T, Ross W, Blatter EE et al. DNA binding determinants of the a subunit of RNA polymerase: a novel DNA binding domain architecture. Genes Dev 1995; (in press).Google Scholar
  50. 49.
    Newlands JT, Josaitis CA, Ross W, Gourse RL. Both fis-dependent and factor-independent upstream activation of the rrnB P1 promoter are face of the helix dependent. Nucl Acids Res 1992; 29:719–726.Google Scholar
  51. 50.
    Tang H, Severinov K, Goldfarb A, Fenyo D, Chait B, Ebright RH. Location, structure, and function of the target of a transcriptional activator protein. Genes Dev 1994; 8:3058–3067.Google Scholar
  52. 51.
    Bujard H, Brenner M, Deuschle U, Kammerer W, Knaus R. Structure-Function Relationship of Escherichia coli Promoters. In: Reznikoff WS et al, eds. RNA polymerase and the regulation of transcription. New York: Elsevier, 1987:95–103.Google Scholar
  53. 52.
    Fredrick K, Caramori T, Chen Y-C, Galizzi A, Helmann JD. Promoter architecture in the flagellar regulon of Bacillus subtilis: high level expression of flagellin by the sD RNA polymerase requires an upstream promoter element. Proc Natl Acad Sci USA 1995; 92:2582–2586.Google Scholar
  54. 53.
    Ross W, Thompson JF, Newlands JT, Gourse RL. E. coli Fis protein activates rRNA transcription in vitro and in vivo. EMBO J 1990; 9:3733–3742.Google Scholar
  55. 54.
    Nilsson L, Vanet A, Vijgenboom E, Bosch L. The role of Fis in trans-activation of stable RNA operons of E. coli. EMBO J 1990; 9:727–734.Google Scholar
  56. 55.
    Nilsson L, Emilsson V. Factor for Inversion stimulation-dependent growth rate regulation of individual tRNA species in Escherichia coli. J Biol Chem 1994; 269:9460–9465.Google Scholar
  57. 56.
    Johnson RC, Bruist MF, Simon MI. Host protein requirements for in vitro site-specific inversion. Cell 1986; 46:531–539.Google Scholar
  58. 57.
    Koch C, Kahmann R. Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriphage Mu. J Biol Chem 1986; 261:15673–15678.Google Scholar
  59. 58.
    Thompson JF, Moitosa de Vargas L, Koch C, Kahmann R, Landy A. Cellular factors couple recombination with growth phase: characterization of a new component in the λ site-specific recombination pathway. Cell 1987; 50:901–908.Google Scholar
  60. 59.
    Filutowicz M, Ross W, Wild J, Gourse RL. Involvement of Fis protein in replication of the E. coli chromosome. J Bacteriol 1992; 174:398–407.Google Scholar
  61. 60.
    Gille H, Egan JB, Roth A, Messer W. The Fis protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucl Acids Res 1991; 19:4167–4172.Google Scholar
  62. 61.
    Xu J, Johnson RC. Isolation of genes repressed by Fis: Fis and RpoS co-modulate growth phase dependent gene expression in Escherichia coli. J Bacteriol 1995; 177:938–947.Google Scholar
  63. 62.
    Ball CA, Osuna R, Ferguson KC, Johnson RC. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J Bacteriol 1992; 174:8043–8056.Google Scholar
  64. 63.
    Nilsson L, Verbeek H, Vijgenboom E, van Drunen C, Vanet A, Bosch L. Fis-dependent trans-activation of stable RNA operons of E. coli under varying growth conditions. J Bacteriol 1992; 174:921–929.Google Scholar
  65. 64.
    Gosink KK, Ross W, Leirmo S, Osuna R, Finkel SE, Johnson RC, Gourse RL. DNA binding and bending are necessary but not sufficient for Fis-dependent activation of rrnB P1. J Bacteriol 1993; 175:1580–1589.Google Scholar
  66. 65.
    Bokal AJ IV, Ross W, Gourse RL. The transcriptional activator protein Fis: DNA interactions and cooperative interactions with RNA polymerase at the Escherichia coli rrnB P1 promoter. J Mol Biol 1995; 245:197–207.Google Scholar
  67. 66.
    Plaskon RR, Warteil RM. Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters. Nucl Acids Res 1987; 15:785–796.Google Scholar
  68. 67.
    Gaal T, Rao L, Estrem ST, Yang J, Wartell RM, Gourse RL. Localization of the intrinsically bent DNA region upstream of the E. coli rrnB P1 promoter. Nucl Acids Res 1994; 22:2344–2350.Google Scholar
  69. 68.
    Morgan EA. Antitermination mechanisms in rRNA operons of Escherichia coli. J Bacteriol 1986; 168:1–5.Google Scholar
  70. 69.
    Li S, Squires C, Squires CL. Antitermination of Escherichia coli ribosomal RNA transcription is caused by a control region segment containing lambda nut-like sequences. Cell 1984; 38:851–860.Google Scholar
  71. 70.
    Friedman DI, Olson E, Johnson LL, Alessi D, Craven MG. Transcription-dependent competition for a host factor: the function and optimal sequence of the λboxA transcription antitermination signal. Genes Dev 1990; 4:2210–2222.Google Scholar
  72. 71.
    Lazinski D, Grzadzielska E, Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell 1989; 59:207–218.Google Scholar
  73. 72.
    Berg K, Squires C, Squires CL. Ribosomal RNA Operon anti-termination. Function of leader and spacer region Box B-Box A sequences and their conservation in diverse micro-organisms. J Mol Biol 1989; 209:345–358.Google Scholar
  74. 73.
    Sharrock RA, Gourse RL, Nomura M. Defective antitermination of rRNA transcription and derepression of rRNA and tRNA synthesis in the nus B5 mutant of Escherichia coli. Proc Natl Acad Sci USA 1985; 82:5275–5279.Google Scholar
  75. 74.
    Theissen G, Behrens SE, Wagner R. Functional importance of the Escherichia coli ribosomal RNA leader box A sequence for post-transcrip-tional events. Mol Microbiol 1990; 4:1667–1678.Google Scholar
  76. 75.
    Squires CL, Greenblatt J, Li J, Condon C, Squires CL. Ribosomal RNA antitermination in vitro: requirement for Nus factors and one or more unidentified cellular components. Proc Natl Acad Sci USA 1993; 90:970–974.Google Scholar
  77. 76.
    Lukacsovich T, Boros I, Venetianer P. New regulatory features of the promoters of an Escherichia coli rRNA gene. J Bacteriol 1987; 169:272–277.Google Scholar
  78. 77.
    Csiszar K, Lukacsovich T, Venetianer P. Regulatory elements of the promoter of an rRNA gene of E. coli. Biochim Biophys Acta 1990; 1050:312–316.Google Scholar
  79. 78.
    Stark MJR, Gourse RL, Jemiolo DK, Dahlberg AE. A mutation in an Escherichia coli ribosomal RNA Operon which blocks the production of precursor 23S ribosomal RNA by RNase III in vivo and in vitro. J Mol Biol 1985; 182:205–216.Google Scholar
  80. 79.
    Zacharias M, Wagner R. Functional characterization of a putative internal promoter sequence between the 16S and the 23S RNA genes within the Escherichia coli rrnB operon. Mol Microbiol 1989; 3:405–410.Google Scholar
  81. 80.
    Srivastava AK, Schlessinger D. Mechanism and regulation of bacterial ribosomal RNA processing. Annu Rev Microbiol 1990; 44:105–129.Google Scholar
  82. 81.
    Kingston RE, Chamberlin MJ. Pausing and attenuation of in vitro transcription in the rrnB operon of E. coli. Cell 1981; 27:523–531.Google Scholar
  83. 82.
    Krohn M, Pardon B, Wagner R. Effects of template topology on RNA polymerase pausing during in vitro transcription of the Escherichia coli rrnB leader region. Mol Microbiol 1992; 6:581–589.Google Scholar
  84. 83.
    Krych M, Sirdeshmukh R, Gourse R, Schlessinger D. Processing of Escherichia coli 16S rRNA with phage λ leader sequences. J Bacteriol 1987; 169:5523–5529.Google Scholar
  85. 84.
    Theissen G, Eberle J, Zacharias M, Tobias L, Wagner R. The Tl structure within the leader region of Escherichia coli ribosomal RNA operons has post-transcriptional functions. Nucl Acids Res 1990; 18:3893–3901.Google Scholar
  86. 85.
    Mori H, Dammel C, Becker E, Triman K, Noller HF. Single base alterations upstream of the E. coli 16S rRNA coding region result in temperature-sensitive 16S rRNA expression. Biochim Biophys Acta 1990; 1050:323–327.Google Scholar
  87. 86.
    Theissen G, Thelen L, Wagner R. Some base substitutions in the leader of an Escherichia coli ribosomal RNA operon affect the structure and function of ribosomes. J Mol Biol 1993; 233:203–218.Google Scholar
  88. 87.
    Zacharias M, Wagner R. Deletions in the tL structure upstream to the rRNA genes in the E. coli rrnB operon cause transcription polarity. Nucl Acid Res 1987; 15:8235–8248.Google Scholar
  89. 88.
    Aksoy S, Squires CL, Squires C. Evidence for antitermination in Escherichia coli rRNA transcription. J Bacteriol 1984; 159:260–264.Google Scholar
  90. 89.
    Albrechtsen B, Squires CL, Li S, Squires C. Antitermination of characterized transcriptional terminators by the Escherichia coli rrnG leader region. J Mol Biol 1990; 213:123–134.Google Scholar
  91. 90.
    Albrechtsen B, Ross BM, Squires C, Squires CL. Transcriptional termination sequence at the end of the Escherichia coli ribosomal RNA G operon: complex terminators and antitermination. Nucl Acids Res 1991; 19:1845–1852.Google Scholar
  92. 91.
    Orosz A, Boros I, Venetianer P. Analysis of the complex transcription termination region of the Escherichia coli rrnB gene. Eur J Biochem 1991; 201:653–659.Google Scholar
  93. 92.
    Ghosh B, Grzadzielska E, Bhattacharya P, Peralta E, DeVito J, Das A. Specificity of antitermination mechanisms: suppression of the terminator cluster T1-T2 of Escherichia coli ribosomal RNA operon, rrnB, by phage λ antiterminators. J Mol Biol 1991; 222:59–66.Google Scholar
  94. 93.
    Young RA. Transcription termination in the Escherichia coli ribosomal RNA operon rrnC. J Biol Chem 1979; 254:12725–12731.Google Scholar
  95. 94.
    Duester G, Holmes WM. The distal end of the ribosomal RNA operon rrnD of Escherichia coli contains a tRNAThr gene, two 5S genes and a transcription terminator. Nucl Acids Res 1980; 8:3793–3807.Google Scholar
  96. 95.
    Sakiya T, Mori M, Takahashi N, Nishimura S. Sequence of the distal tRNAAsp gene and the transcription termination signal in the Escherichia coli ribosomal RNA operon rrnF (or G). Nucl Acids Res 1980; 8:3809–3827.Google Scholar
  97. 96.
    Liebke H, Hatfull G. The seqeunce of the distal end of the E. coli ribosomal RNA operon indicates conserved features are shared by rrn operons. Nucl Acids Res 1985; 13:5515–5525.Google Scholar
  98. 97.
    Seol W, Shatkin AJ. Sequence of the distal end of the E. coli ribosomal RNA rrnG operon. Nucl Acids Res 1990; 18:3056.Google Scholar
  99. 98.
    Bremer H, Dennis PP. Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhardt FC et al, ed. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Washington, DC: American Society for Microbiology, 1987: 1527–1542.Google Scholar
  100. 99.
    Gotta SL, Miller OL, French SL. rRNA Transcription rate in Escherichia coli. J Bacteriol 1991; 173:6647–6649.Google Scholar
  101. 100.
    Condon C, French S, Squires C, Squires CL. Depletion of functional ribosomal RNA Operons in Escherichia coli causes increased expression of the remaining intact copies. EMBO J 1993; 12:4305–4315.Google Scholar
  102. 101.
    Vogel U, Jensen KF. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol 1994; 176:2807–2813.Google Scholar
  103. 102.
    Jensen KF, Pedersen S. Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosyn-thetic apparatus with substrates and catalytic components. Microbiol Rev 1990; 54:89–100.Google Scholar
  104. 103.
    Vogel U, Sorensen M, Pedersen S, Jensen KF, Kilstrup M. Decreasing transcription elongation rate in Escherichia coli exposed to amino starvation. Mol Microbiol 1992; 6:2191–2200.Google Scholar
  105. 104.
    Vogel U, Jensen KF. Effects of guanosine 3′,5′-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. J Biol Chem 1994; 269:16236–16241.Google Scholar
  106. 105.
    Sorensen MA, Jensen KF, Pedersen S. High concentrations of ppGpp decrease the RNA chain growth rate. J Mol Biol 1994; 236:441–454.Google Scholar
  107. 106.
    Kingston RE, Nierman WC, Chamberlin MJ. A direct effect of guanosine tetraphosphate on pausing of Escherichia coli RNA polymerase during RNA chain elongation. J Biol Chem 1981; 256:2787–2797.Google Scholar
  108. 107.
    Schreiber G, Metzger SG, Aizenman E, Roza S, Cashel M, Glaser G. Overexpression of the relA gene in Escherichia coli. J Biol Chem 1991; 266:3760–3767.Google Scholar
  109. 108.
    Cashel M, Rudd KE. The stringent response. In: Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Neidhardt FC et al, ed. Washington, DC: American Society for Microbiology, 1987:1410–1438.Google Scholar
  110. 109.
    Goldman E, Jakubowski H. Uncharged tRNA, protein synthesis, and the bacterial stringent response. Mol Microbiol 1990; 4:2035–2040.Google Scholar
  111. 110.
    Gourse RL, Stark MJR, Dahlberg AE. Regions of DNA involved in the stringent control of plasmid-encoded rRNA in vivo. Cell 1983; 32:1347–1354.Google Scholar
  112. 111.
    Sarmientos P, Sylvester JE, Contente S, Cashel M. Differential stringent control of the tandem E. coli ribosomal RNA promoters from the rrnA operon expressed in vivo in multicopy plasmids. Cell 1983; 32:1337–1346.Google Scholar
  113. 112.
    Josaitis CA, Gaal, T, Gourse RL. Stringent control and growth rate dependent control have nonidentical promoter sequence determinants. Proc Natl Acad Sci USA 1995; 92:1117–1121.Google Scholar
  114. 113.
    Ikemura T, Dahlberg JE. Small ribonucleic acids in Escherichia coli. II. Noncoordinate accumulation during stringent control. J Biol Chem 1973; 248:5033–5041.Google Scholar
  115. 114.
    Travers AA. Conserved features of coordinately regulated E. coli promoters. Nucl Acids Res 1984; 12:2605–2618.Google Scholar
  116. 115.
    Travers AA. Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. J Bacteriol 1980; 141:973–976.Google Scholar
  117. 116.
    Nene V, Glass RE. Relaxed mutants of Escherichia coli RNA polymerase. FEBS Lett 1983; 153:307–310.Google Scholar
  118. 117.
    Glass, RE, Jones ST, Ishihama A. Genetic studies on the β subunit of Escherichia coli RNA polymerase. VIL RNA polymerase is a target for ppGpp. Mol Gen Genet 1986; 203:265–268.Google Scholar
  119. 118.
    Glass RE, Jones ST, Nomura T, Ishihama A. Hierarchy of the strength of Escherichia coli stringent control signals. Mol Gen. Genet 1987; 210:1–4Google Scholar
  120. 119.
    Baracchini E, Glass R, Bremer H. Studies in vivo on Escherichia coli RNA polymerase mutants altered in the stringent response. Mol Gen. Genet 1988; 213:379–387.Google Scholar
  121. 120.
    Igarashi K, Fujita N, Ishihama A. Promoter selectivity of Escherichia coli RNA polymerase: omega factor is responsible for ppGpp sensitivity. Nucl Acids Res 1989; 17:8755–8765.Google Scholar
  122. 121.
    Gentry DR, Burgess RR. rpoZ, encoding the omega subunit of Escherichia coli RNA polymerase, is in the same operon as spoT. J Bacteriol 1989; 171:1271–1277.Google Scholar
  123. 122.
    Gentry D, Xiao H, Burgess RR, Cashel M. The omega subunit of Escherichia coli K-12 RNA polymerase is not required for stringent RNA control in vivo. J Bacteriol 1991; 173:3901–3903.Google Scholar
  124. 123.
    Owens JR, Young A, Woody M, Haley BE. Characterization of the gua-nosine-3’-diphosphate-5’-diphosphate binding site on E. coli RNA polymerase using a photoprobe, 8-azidoguanosine-3’-5’-bisphosphate. Biochem Biophys Res Comm 1987; 142:964–971.Google Scholar
  125. 124.
    Zacharias M, Goringer HU, Wagner R. The signal for growth rate control and stringent sensitivity in E. coli is not restricted to a particular sequence motif within the promoter region. Nucl Acids Res 1990; 18:6271–6275.Google Scholar
  126. 125.
    Bartlett MS, Gourse RL. Growth rate dependent control of the rrnB P1 core promoter in Escherichia coli. J Bacteriol 1994; 176:5560–5564.Google Scholar
  127. 126.
    Keener J, Nomura M. Dominant lethal phenotype of a mutation in the -35 recognition region of Escherichia coli 70. Proc Natl Acad Sci USA 1993; 90:1751–1755.Google Scholar
  128. 127.
    Koch AL. Overall controls on the biosynthesis of ribosomes in growing bacteria. J Theor Biol 1970; 28:203–231.Google Scholar
  129. 128.
    Jinks-Robertson S, Gourse RL, Nomura M. Expression of rRNA and tRNA genes in Escherichia coli: evidence for feedback regulation by products of rRNA operons. Cell 1983; 33:865–876.Google Scholar
  130. 129.
    Gourse RL, Nomura M. The level of rRNA, not tRNA, synthesis controls transcription of rRNA operons in E. coli. J Bacteriol 1984; 160:1022–1026.Google Scholar
  131. 130.
    Gourse RL, Takebe Y, Sharrock RA, Nomura M. Feedback regulation of rRNA and tRNA synthesis and accumulation of free ribosomes after conditional expression of rRNA. Proc Natl Acad Sci USA 1985; 82:1069–1073.Google Scholar
  132. 131.
    Cole JR, Olsson CL, Hershey JWB, Grunberg-Manago M, Nomura M. Feedback regulation of rRNA synthesis in Escherichia coli. Requirement for initiation factor IF2. J Mol Biol 1987; 198:383–392.Google Scholar
  133. 132.
    Yamagishi M, deBoer HA, Nomura M. Feedback regulation of rRNA synthesis: a mutational alteration in the anti-Shine-Dalgarno of the 1 GS rRNA gene abolishes regulation. J Mol Biol 1987; 198:547–550.Google Scholar
  134. 133.
    Ellwood M, Nomura M. Deletion of a ribosomal ribonucleic acid Operon in Escherichia coli. J Bacteriol 1980; 143:1077–1080.Google Scholar
  135. 134.
    Travers AA. RNA polymerase and the control of growth. Nature 1976; 263:641–646.Google Scholar
  136. 135.
    Ryals J, Little R, Bremer H. Control of rRNA and tRNA synthesis in Escherichia coli by guanosine tetraphosphate. J Bacteriol 1982; 151:1261–1268.Google Scholar
  137. 136.
    Baracchini E, Bremer H. Stringent and growth control of rRNA synthesis in Escherichia coli are both mediated by ppGpp. J Biol Chem 1988; 263:2597–2602.Google Scholar
  138. 137.
    Hernandez VJ, Bremer H. Guanosine tetraphosphate (ppGpp) dependence of the growth rate control of rrnB P1 promoter activity in Escherichia coli. J Biol Chem 1990; 265:11605–11614.Google Scholar
  139. 138.
    Hernandez VJ, Bremer H. Escherichia coli ppGpp synthetase II activity requires spoT. J Biol Chem 1991; 266:5991–5999.Google Scholar
  140. 139.
    Vogel U, Pedersen S, Jensen KF. An unusual correlation between ppGpp pool size and rate of ribosome synthesis during partial pyrimidine starvation of Escherichia coli. J Bacteriol 1991; 173:1168–1174.Google Scholar
  141. 140.
    Joseleau-Petit D, Thevenet D, D’Ari R. ppGpp concentration, growth without PBP2 activity, and growth-rate control in Escherichia coli. Mol Microbiol 1994; 13:911–917.Google Scholar
  142. 141.
    Xiao H, Kaiman M, Ikehara K, Zemel S, Glaser G, Cashel M. Residual guanosine 3’,5’-Bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 1991; 266:5980–5990.Google Scholar
  143. 142.
    Gaal T, Gourse RL. Guanosine 3’-diphosphate 5’-diphosphate is not required for growth rate-dependent regulation of rRNA transcription in Escherichia coli. Proc Natl Acad Sci USA 1990; 87:5533–5537.Google Scholar
  144. 143.
    Hernandez VJ, Bremer H. Characterization of RNA and DNA synthesis in Escherichia coli strains devoid of ppGpp. J Biol Chem 1993; 268:10851–10862.Google Scholar
  145. 144.
    Maaloe O. An analysis of bacterial growth. Dev Biol Supp 1969; 3:33–58.Google Scholar
  146. 145.
    Maaloe O. Regulation of the protein synthesizing machinery-ribosomes, tRNA, factors, and so on. In: Goldberger R. ed. Biological regulation and development. New York: Plenum, 1979:487–542.Google Scholar
  147. 146.
    Nomura M, Bedwell D, Yamagishi M, Cole JR, Kolb JM. RNA polymerase and the regulation of RNA synthesis in Escherichia coli. RNA polymerase concentration, stringent control, and ribosome feedback regulation. In: Reznikoff WS et al, eds. RNA polymerase and the regulation of transcription. New York: Elsevier Science Publishing, 1986:137–149.Google Scholar
  148. 147.
    Downing W, Dennis PP. RNA polymerase activity may regulate transcription initiation and attenuation in the rplKAJLrpoBC Operon in Escherichia coli. J Biol Chem 1991; 266:1304–1311.Google Scholar
  149. 148.
    Lamond AI, Travers AA. Stringent control of bacterial transcription. Cell 1985; 41:6–8.Google Scholar
  150. 149.
    Josaitis C, Gaal T, Ross W, Gourse RL. Sequences upstream of the -35 hexamer of rrnB P1 affect promoter strength and upstream activation. Biochim Biophys Acta 1990; 1050:307–311.Google Scholar
  151. 150.
    Verbeek H, Nilsson L, Baliko G, Bosch L. Potential binding sites of the trans-activator Fis are present upstream of all rRNA operons and of many but not all tRNA operons. Biochim Biophys Acta 1990; 1050:302–306.Google Scholar
  152. 151.
    Rowley KB, Elford RM, Roberts I, Holmes WM. In vivo regulatory responses of four Escherichia coli operons which encode leucyl-tRNAs. J Bacteriol 1993; 175:1309–1315.Google Scholar
  153. 152.
    Emilsson V, Kurland CG. Growth rate dependence of transfer RNA abundance in Escherichia coli. EMBO J 1990; 8:4359–4366.Google Scholar
  154. 153.
    Liebke HH, Speyer JF. A new gene in E. coli rRNA synthesis. Mol Gen. Genet 1983; 189:314–320.Google Scholar
  155. 154.
    Singer M, Rossmeissl P, Cali BM, Liebke H, Gross CA. The Escherichia coli ts8 mutation is an allele of fda, the gene encoding fructose-1,6-diphos-phate aldolase. J Bacteriol 1991; 173:6242–6248.Google Scholar
  156. 155.
    Singer M, Walter WA, Cali BM, Liebke H, Gourse RL, Gross CA. Physiological effects of the fructose-1,6-diphosphate aldolase ts8 mutation on stable RNA synthesis in Escherichia coli. J Bacteriol 1991; 173:6249–6257.Google Scholar
  157. 156.
    Bock A, Neidhardt FC. Isolation of a mutant of Escherichia coli with a temperature sensitive fructose-1,6-diphosphate aldolase activity. J Bacteriol 1966; 92:464–469.Google Scholar
  158. 157.
    Bock A, Neidhardt FC. Properties of a mutant of Escherichia coli with a temperature sensitive fructose-1,6-diphosphate aldolase activity. J Bacteriol 1966; 92:470–476.Google Scholar
  159. 158.
    Schreyer R, Bock KA. Phenotypic suppression of a fructose-1,6-diphos-phate aldolase mutation in Escherichia coli. J Bacteriol 1973; 115:268–276.Google Scholar
  160. 159.
    Newlands JT, Gaal T, Mecsas J, Gourse RL. Transcription of the E. coli rrnB P1 promoter by the heat shock RNA polymerase (Eσ32) in vitro. J Bacteriol 1993; 175:661–668.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Richard L. Gourse
  • Wilma Ross

There are no affiliations available

Personalised recommendations