Heat Shock Regulation

  • Dominique Missiakas
  • Satish Raina
  • Costa Georgopoulos


The heat shock or stress response of Escherichia coli has evolved in order to detect and deal with the presence of unfolded, misfolded, damaged or aggregated polypeptide chains. At the present, two major regulons are known to control this response. The “classical” heat shock regulon has evolved to deal with intracellular protein perturbations and is under the positive control of the σ32 transcription factor (the rpoH gene product) and the negative control of some of the heat shock proteins themselves. The newly discovered second heat shock regulon has evolved to deal with protein misfolding/aggregation/imbalance in the outer cellular compartments. It is under the positive control of the σE transcription factor (the rpoE gene product). The two heat shock regulons appear to be interconnected, inasmuch as the σE factor participates in the transcriptional regulation of the σ32-encoding gene, especially at very high temperatures.


Heat Shock Heat Shock Protein Sigma Factor Heat Shock Response Heat Shock Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181:223–230.Google Scholar
  2. 2.
    Jaenicke R. Folding and association of proteins. Prog Biophys Mol Biol 1987; 49:117–237.Google Scholar
  3. 3.
    Ellis RJ, van der Vies SM. Molecular chaperones. Ann Rev Biochem 1991; 60:321–347.Google Scholar
  4. 4.
    Georgopoulos C, Welch WJ. Role of major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 1993; 9:601–635.Google Scholar
  5. 5.
    Hendrick JP, Hard F-U. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 1993; 62:349–384.Google Scholar
  6. 6.
    Herendeen SL, VanBogelen RA, Neidhardt FC. Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol 1979; 139:185–194.Google Scholar
  7. 7.
    Gragerov A, Nudler E, Komissarova N et al. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci USA 1992; 89:10341–10344.Google Scholar
  8. 8.
    Friedman DI, Olson ER, Tilly K et al. Interactions of bacteriophage λ and host macromolecules in the growth of bacteriophage λ. Microbiol Rev 1984; 48:299–325.Google Scholar
  9. 9.
    Georgopoulos C. The emergence of the chaperone machines. Trends Biochem Sci 1992; 17:295–299.Google Scholar
  10. 10.
    Georgopoulos C, Linder CH. Molecular chaperones in T4 assembly. In: Karam J, ed. Bacteriophage T4 II. Washington D.C.: American Society for Microbiology, 1993.Google Scholar
  11. 11.
    Georgopoulos C, Liberek K, Zylicz M et al. Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In: Morimoto R, Tissières A, Georgopoulos C, eds. The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1994:209–249.Google Scholar
  12. 12.
    Skowyra D, Georgopoulos C, Zylicz M. The Escherichia coli dnaK protein, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent reaction. Cell 1990; 62:939–944.Google Scholar
  13. 13.
    Ziemienowicz A, Skowyra D, Zeilstra-Ryalls J et al. Either of the Escherichia coli GroEL/GroES and DnaK/DnaJ/GrpE chaperone machines can reactivate heat-treated RNA polymerase: different mechanisms for the same activity. J Biol Chem 1993; 268:25425–25431.Google Scholar
  14. 14.
    Phillips GJ, Silhavy TJ. Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybrid proteins in E. coli. Nature 1990; 344:882–884.Google Scholar
  15. 15.
    Wild J, Altman E, Yura T et al. DnaK and dnaJ heat shock proteins participate in protein export in Escherichia coli. Genes Dev 1992; 6:1165–1172.Google Scholar
  16. 16.
    Liberek K, Marszalek J, Ang D et al. The Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate DnaK’s ATPase activity. Proc Natl Acad Sci USA 1991; 88:2874–2878.Google Scholar
  17. 17.
    Landry SJ, Jordan R, McMacken R et al. Different conformations of the same polypeptide bound to chaperone DnaK and GroEL. Nature 1992; 355:455–457.Google Scholar
  18. 18.
    Langer T, Lu C, Echols H et al. Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 1992; 356:683–689.Google Scholar
  19. 19.
    Schmid D, Baici A, Gehring H et al. Kinetics of molecular chaperone action. Science 1994; 263:971–973.Google Scholar
  20. 20.
    Palleros DR, Reid KL, Shi L et al. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 1993; 365: 664–666.Google Scholar
  21. 21.
    Liberek K, Skowyra D, Zylicz M et al. The Escherichia coli DnaK chaperone protein, the Hsp70 eukaryotic equivalent, changes its conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J Biol Chem 1991; 266:14491–14496.Google Scholar
  22. 22.
    Liberek K, Georgopoulos C. Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins. Proc Natl Acad Sci USA 1993; 90:11019–11023.Google Scholar
  23. 23.
    Liberek K, Wall D, Georgopoulos C. The DnaJ chaperone catalytically activates the DnaK chaperone to specifically bind the σ32 heat shock transcriptional regulator. Proc Nat Acad Sci (USA) 1995; 92:6224–6228.Google Scholar
  24. 24.
    Bardwell JCA, Tilly K, Craig E et al. The nucleotide sequence of the Escherichia coli K12 dnaJ gene: a gene that encodes a heat shock protein. J Biol Chem 1986; 261:1782–1785.Google Scholar
  25. 25.
    Zeilstra-Ryalls J, Fayet O, Georgopoulos C. The universally conserved GroE chaperonins. Annu Rev Microbiol 1991; 45:301–325.Google Scholar
  26. 26.
    Fayet O, Ziegelhoffer T, Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 1989; 171:1379–1385.Google Scholar
  27. 27.
    Van Dyk TK, Gatenby AA, LaRossa RA. Demonstration by genetic suppression of interaction of GroE products with many proteins. Nature 1989; 342:451–453.Google Scholar
  28. 28.
    Straus DB, Walter WA, Gross CA. Escherichia coli heat shock gene mutants are defective in proteolysis. Genes Dev 1988; 2:1851–1858.Google Scholar
  29. 29.
    Hendrick JP, Langer T, Davis TA et al. Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc Natl Acad Sci USA 1993; 90:10216–10220.Google Scholar
  30. 30.
    Braig K, Otwinowski Z, Hegde R et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 Â. Nature 1994; 371:578–586.Google Scholar
  31. 31.
    Azem A, Kessel M, Goloubinoff P. Characterization of two functional GroELl4 (GroES7)2 chaperonin hetero-oligomers. Science 1994; 265:653–656.Google Scholar
  32. 32.
    Langer T, Pfeifer G, Martin J et al. Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J 1992; 11:4757–4765.Google Scholar
  33. 33.
    van der Vies SM, Gatenby AA, Georgopoulos C. Bacteriophage T4 encodes a co-chaperonin that can substitute for Escherichia coli GroES in protein folding. Nature 1994; 368:654–656.Google Scholar
  34. 34.
    Bochkareva ES, Lissin NM, Girshovich AS. Transient association of newly synthesized unfolded proteins with the heat-shock GroEL protein. Nature 1988; 336:254–257.Google Scholar
  35. 35.
    Goloubinoff P, Christeller JT, Gatenby AA et al. Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature 1989; 342:884–889.Google Scholar
  36. 36.
    Braig K, Simon M, Furuya F et al. A polypeptide bound by the chaperonin groEL is localized within a central cavity. Proc Natl Acad Sci USA 1993; 90:3978–3982.Google Scholar
  37. 37.
    Laminet AA, Ziegelhoffer T, Georgopoulos C et al. The E. coli heat shock proteins GroEL and GroES modulate the folding of the β-lactamase precursor. EMBO J 1990; 9:2315–2319.Google Scholar
  38. 38.
    Zahn R, Spitzfaden C, Ottiger M et al. Destabilization of the complete protein, secondary structure on binding to the chaperone GroEL. Nature 1994; 368:261–265.Google Scholar
  39. 39.
    Howard-Flanders P, Simson E, Theriot L. A locus that controls filament formation and sensitivity to radiation in Escherichia coli K12. Genetics 1964; 49:237–241.Google Scholar
  40. 40.
    Gottesman S, Maurizi MR. Regulation by proteolysis: Energy-dependent proteases and their targets. Microbiol Rev 1992; 56:592–621.Google Scholar
  41. 41.
    Sherman MY, Goldberg AL. Involvement of the chaperonin DnaK in the rapid degradation of a mutant protein in Escherichia coli. EMBO J 1992; 11:71–77.Google Scholar
  42. 42.
    Wagner I, Arlt H, van Dyck L et al. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J 1994; 13:5135–5145.Google Scholar
  43. 43.
    Katayama Y, Gottesman S, Pumphrey J et al. The two-component ATP-dependent Clp protease of Escherichia coli: purification, cloning, and mutational analysis of the ATP-binding component. J Biol Chem 1988; 263:15226–15236.Google Scholar
  44. 44.
    Gottesman S, Clark WP, de Crecy-Lagard V et al. ClpX, an alternative subunit for the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 1993; 268:22618–22626.Google Scholar
  45. 45.
    Wickner S, Gottesman S, Skowyra D et al. A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 1994; 91:12218–12222.Google Scholar
  46. 46.
    Wojkowiak D, Georgopoulos C, Zylicz M. Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J Biol Chem 1993; 268:22609–22617.Google Scholar
  47. 47.
    Wickner S, Hoskins J, McKenney K. Monomerization of RepA dimers by heat shock proteins activates binding to DNA replication origin. Proc Nat Acad Sci USA 1991; 88:7903–7907.Google Scholar
  48. 48.
    Wawrzynow A, Wojtkowiak D, Marszalek J et al. The ClpX heat shock protein of Escherichia coli, the ATP-dependent substrate specificity component of the ClpP/ClpX protease, is a novel molecular chaperone. EMBO J 1995; 14:1867–1877.Google Scholar
  49. 49.
    Squires C, Squires CL. The Clp proteins: proteolysis regulators or molecular chaperones? J Bacteriol 1992; 174:1081–1085.Google Scholar
  50. 50.
    Parsell DA, Kowal AS, Singer MA et al. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 1994; 372:475–477.Google Scholar
  51. 51.
    Gross CA, Straus DB, Erickson JW et al. The function and regulation of heat shock proteins in Escherichia coli. In: Morimoto R, Tissières A, Georgopoulos C, eds. Stress proteins in biology and medicine. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 1990:167–189.Google Scholar
  52. 52.
    Neidhardt FC, VanBogelen RA. Heat shock response. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE, eds. Escherichia coli and Salmonella typhimurium. Washington D.C.: American Society for Microbiology, 1987:1334–1345.Google Scholar
  53. 53.
    Yura T, Nagai H, Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol 1993; 47:321–350.Google Scholar
  54. 54.
    Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol 1993; 9:671–680.Google Scholar
  55. 55.
    Erickson JW, Gross CA. Identification of the σE subunit of Escherichia coli RNA polymerase; a second alternate σ factor involved in high temperature gene expression. Genes Dev 1989: 3:1462–1471.Google Scholar
  56. 56.
    Wang Q, Kaguni JM. DnaA protein regulates transcription of the rpoH gene of Escherichia coli. J Bacteriol 1989; 264:7338–7344.Google Scholar
  57. 57.
    Straus DB, Walter WA, Gross CA. The heat shock response of E. coli is regulated by changes in the concentration of σ32. Nature 1987; 329:348–351.Google Scholar
  58. 58.
    Nagai H, Yuzawa H, Kanemori M et al. A distinct segment of the σ32 polypeptide is involved in DnaK-mediated negative control of the heat shock reponse in Escherichia coli. Proc Natl Acad Sci USA 1994; 91:10280–10284.Google Scholar
  59. 59.
    Tilly K, Spence J, Georgopoulos C. Modulation of the stability of Escherichia coli heat shock regulatory factor σ32. J Bacteriol 1989; 171:1585–1589.Google Scholar
  60. 60.
    Straus DB, Walter W, Gross CA. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of σ32. Genes Dev 1990; 4:2202–2209.Google Scholar
  61. 61.
    Herman C, Thévenet D, D’Ari R et al. Degradation of σ32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc Natl Acad Sci USA 1995; 92:3516–3520.Google Scholar
  62. 62.
    Herman C, Ogura T, Tomoyasu T et al. Cell growth and λ phage development controlled by the same essential Escherichia coli gene, ftsH/hflB. Proc Natl Acad Sci USA 1993; 90:10861–10865.Google Scholar
  63. 63.
    Banuett F, Hoyt MA, McFarlane L et al. hflB, a new Escherichia coli locus regulating lysogeny and the level of bacteriophage lambda cII protein. J Mol Biol 1986; 187:213–224.Google Scholar
  64. 64.
    Kanemori M, Hirotada M, Yura T. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of s32 in Escherichia coli. J Bacteriol 1994; 176:5648–6553.Google Scholar
  65. 65.
    Parsell DA, Sauer RT. Induction of a heat shock-like response by unfolded protein in Escherichia coli: dependence on protein level not protein degradation. Genes Dev 1989; 3:1226–1232.Google Scholar
  66. 66.
    Wild J, Walter WA, Gross CA et al. Accumulation of secretory protein precursors in Escherichia coli induces the heat shock response. J Bacteriol 1993; 175:3992–3997.Google Scholar
  67. 67.
    Craig EA, Gross CA. Is hsp70 the cellular thermometer? Trends Biochem Sci 1991; 16:135–140.Google Scholar
  68. 68.
    Gamer J, Bujard H, Bukau B. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor σ32. Cell 1992; 69:833–842.Google Scholar
  69. 69.
    Wall D, Zylicz M, Georgopoulos C. The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J Biol Chem 1995; 270:2139–2144.Google Scholar
  70. 70.
    Blaszczak A, Zylicz M, Georgopoulos C et al. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between σ70 and σ32 factors assembled with RNA polymerase. EMBO J 1995; 14:5085–5093.Google Scholar
  71. 71.
    Wang Q, Kaguni JM. A novel sigma factor is involved in expression of the rpoH gene of Escherichia coli. J Bacteriol 1989; 171:4248–4253.Google Scholar
  72. 72.
    Strauch KL, Beckwith. Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci USA 1988; 85:1576–1580.Google Scholar
  73. 73.
    Lipinska B, Sharma S, Georgopoulos C. Sequence analysis and transcriptional regulation of the htrA gene of Escherichia coli:, a σ32-independent mechanism of heat-inducible transcription. Nucleic Acids Res 1988; 16:10053–10067.Google Scholar
  74. 74.
    Erickson JW, Vaughn V, Walter WA et al. Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev 1987; 1:419–432.Google Scholar
  75. 75.
    Raina S, Missiakas D, Georgopoulos C. The rpoE gene encoding the σΕ24) heat shock sigma factor of Escherichia coli. EMBO J 1995; 14:1043–1055.Google Scholar
  76. 76.
    Mecsas J, Rouvière PE, Erickson JW et al. The activity of σe, an Escherichia coli heat-inducible sigma factor, is modulated by expression of outer membrane proteins. Genes Dev 1993; 7:2618–2628.Google Scholar
  77. 77.
    Rouvière P, de las Penas A, Mecsas J et al. rpoE, the gene encoding the second heat-shock sigma factor, σΕ, in Escherichia coli. EMBO J 1995; 14:1032–1042.Google Scholar
  78. 78.
    Lonetto M, Gribskov M, Gross CA. The σ70 family: sequence conservation and evolutionary relationships. J Bacteriol 1992; 174:3843–3849.Google Scholar
  79. 79.
    Lonetto M, Brown KL, Rudd KE et al. Analysis of the Streptomyces coelicolor sigmaE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracyto-plasmic functions. Proc Natl Acad Sci USA 1994; 91:7573–7577.Google Scholar
  80. 80.
    Martin DW, Holloway BW, Deretic V. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. J Bacteriol 1993; 175:1153–1164.Google Scholar
  81. 81.
    Deretic V, Schurr MJ, Boucher JC et al. Conversion of Pseudomonas aeruginosa to mucoidy in cystic fibrosis: environmental stress and regulation of bacterial virulence by alternative sigma factors. J Bacteriol 1994; 176:2773–2780.Google Scholar
  82. 82.
    McGowan SJ, Gorham HC, Hodgson DA. Light-induced carotenogenesis in Myxococcus xanthus: DNA sequence analysis of the carR region. Mol Microbiol 1993; 10:713–735.Google Scholar
  83. 83.
    Bardwell JCA, McGovern K, Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell 1991; 67:581–589.Google Scholar
  84. 84.
    Missiakas D, Georgopoulos C, Raina S. The Escherichia coli dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation. EMBO J 1994; 13:2013–2020.Google Scholar
  85. 85.
    Lipinska B, Zylicz M, Georgopoulos C. The HtrA (DegP) protein essential for Escherichia coli growth at high temperatures, is an endopeptidase. J Bacteriol 1990; 172:1791–1797.Google Scholar
  86. 86.
    Strauch KL, Johnson K, Beckwith J. Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol 1989; 171:2689–2696.Google Scholar
  87. 87.
    Raina S, Georgopoulos C. The htrM gene, whose product is essential for Escherichia coli viability only at elevated temperatures, is identical to the rfaD gene. Nucleic Acids Res 1991; 19:3811–3819.Google Scholar
  88. 88.
    Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 49:1–32.Google Scholar
  89. 89.
    Schnaitman CA, Klena JD. Genetics of lipopolysaccharide biosynthesis in enteric bacteria. Microbiol Rev 1993; 57:655–682.Google Scholar
  90. 90.
    Tormo A, Almiron M, Kolter R. surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 1990; 172:4339.Google Scholar
  91. 91.
    Rahfeld J-U, Rücknagel KP, Scheiben P; et al. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases: Amino acid sequence and recombinant production of parvulin. FEBS Lett 1994; 352:180–184.Google Scholar
  92. 92.
    Missiakas D, Georgopoulos C, Raina S. The Escherichia coli heat shock gene htpY: mutational analysis, cloning, sequencing and transcriptional regulation. J Bacteriol 1993; 175:2613–2624.Google Scholar
  93. 93.
    Danese P, Snyder WB, Cosma C et al. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev 1995; 9:387–398.Google Scholar
  94. 94.
    Weber RF, Silverman PJ. The Cpx proteins of Escherichia coli K12. Structure of the CpxA polypeptide as an inner membrane component. J Mol Biol 1988; 203:467–476.Google Scholar
  95. 95.
    Dong J, Iuchi S, Kwan SH et al. The deduced amino-acid sequence of the cloned cpxR gene suggests the protein is the cognate regulator for the membrane sensor, CpxA, in a two-component signal transduction system of Escherichia coli. Gene 1993; 136:227–230.Google Scholar
  96. 96.
    Kustu S, Santero E, Keener J et al. Expression of σ54 (ntrA-) dependent genes is probably united by a common mechanism. Microbiol Rev 1989; 53:367–376.Google Scholar
  97. 97.
    Brissette JL, Weiner L, Ripmaster TL et al., Characterization and sequence of the Escherichia coli stress-induced psp Operon. J Mol Biol 1991; 220:35–48.Google Scholar
  98. 98.
    Weiner L, Brissette JL, Model P. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on σ54 and modulated by positive and negative feedback mechanisms. Genes Dev 1991; 5:1912–1923.Google Scholar
  99. 99.
    Kleerebezem M, Tommassen J. Expression of the pspA gene stimulates efficient protein export in Escherichia coli. Mol Microbiol 1993; 7:947–956.Google Scholar
  100. 100.
    Weiner L, Model P. Role of an Escherichia coli stress-response Operon in stationary-phase survival. Proc Nat Acad Sci USA 1994; 91:2191–2195.Google Scholar
  101. 101.
    Fischer HM, Babst M, Kaspar T et al. One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J 1993; 12:2901–2912.Google Scholar
  102. 102.
    Zuber U, Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J Bacteriol 1994; 176:1359–1363.Google Scholar
  103. 103.
    Boylan SA, Redfield AR, Brody MS et al., Stress-induced activation of the sigma Β transcription factor of Bacillus subtilis. J Bacteriol 1993; 175:7931–7937.Google Scholar
  104. 104.
    Segal G, Ron EZ. Heat shock transcription of the groESL operon of Agrobacterium tumefaciens may involve a hairpin-loop structure. J Bacteriol 1993; 175:3083–3088.Google Scholar
  105. 105.
    Ueguchi C, Ito K. Multicopy suppression: an approach to understanding intracellular functioning of the protein export system. J Bacteriol 1992; 174:1454–1461.Google Scholar
  106. 106.
    Allen SP, Polazzi JO, Gierse JK et al. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol 1992; 174:6938–6947.Google Scholar
  107. 107.
    Chuang S-E, Burland V, Plunkett G et al. Sequence analysis of four new heat shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 1993; 175:2026–2036.Google Scholar
  108. 108.
    Burton Z, Burgess RR, Lin J et al. The nucleotide sequence of the cloned rpoD gene for the RNA polymerase sigma subunit from Ε. coli K12. Nucl Acids Res 1981; 9:2889–2903.Google Scholar
  109. 109.
    Raina S, Georgopoulos C. A new Escherichia coli heat shock gene, htrC, whose product is essential for viability only at high temperatures. J Bacteriol 1990; 172:3417–3426.Google Scholar
  110. 110.
    Charpentier B, Branlant C. The Escherichia coli gapA gene is transcribed by the vegetative RNA polymerase holoenzyme Εσ70 and by the heat shock RNA polymerase Εσ32. J Bacteriol 1994; 176:830–839.Google Scholar
  111. 111.
    Chuang SE, Blattner FR. Characterization of twenty-six new heat shock genes of Escherichia coli. J Bacteriol 1993; 175:5242–5252.Google Scholar
  112. 112.
    Kornitzer RD, Teff D, Altuvia S et al. Isolation, characterization and sequence of an Escherichia coli heat shock gene, htpX. J Bacteriol 1991; 173:2944–2953.Google Scholar
  113. 113.
    Tomoyasu T, Yuki T, Morimura S et al. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 1993; 175:1344–1351.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Dominique Missiakas
  • Satish Raina
  • Costa Georgopoulos

There are no affiliations available

Personalised recommendations