Advertisement

History of the Pho System

  • Annamaria Torriani-Gorini

Abstract

In Milan, I collaborated with the biochemist Luigi Gorini, with whom I subsequently shared my life. We were studying the resistance of E. coli to a new antibiotic “penicillin”1 and its effect on the metabolism of acidoproteolytic bacteria.2 In 1948 we went to Paris. I joined Jacques Monod at the Institut Pasteur on studies of regulation of carbon metabolism. Thus began my studies in the field of cellular regulatory processes, whose rules were being explored and characterized by André Lwoff, Max Delbrück, Herman Kalckar, Jacques Monod, Mike Doudoroff, Luigi Gorini, and Sol Spiegelman.

Keywords

Nonsense Suppression Specific Transport System phoA Promoter Phosphate Transport System Alkaline Phosphatase Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorini L, Torriani A. Biochemistry of Escherichia coli and the production of penicillinase. Nature 1947; 16:332–333.CrossRefGoogle Scholar
  2. 2.
    Gorini L, Torriani A. Action de la penicillinase sur l’activité proteolytique des bacteries acido-proteolytiques. Biochim Biophys Acta 1948; 2:226–238.CrossRefGoogle Scholar
  3. 3.
    Monod J, Torriani A. De l’amylomaltase d’Escherichia coli. Ann Inst Pasteur (Paris) 1950; 78:65–78.Google Scholar
  4. 4.
    Schwartz M. Expression phénotypique et génétique de mutations affectant le metabolisme du maltose chez Escherichia coli K12. Ann Inst Pasteur (Paris) 1967; 112:673–702.Google Scholar
  5. 5.
    Virtanen AI, Winkler U. Effect of decrease in protein content of cells on the proteolytic enzyme system. Acta Chem Scand 1949; 3:272–278.CrossRefGoogle Scholar
  6. 6.
    Roche J, van Thoai N. Phosphatase alkaline. Adv Enzymol 1950; 10:83–122.Google Scholar
  7. 7.
    Torriani A. Effect of inorganic phosphate in the formation of phosphatases by E. coli. Fed Proc 1959; 18:339.Google Scholar
  8. 8.
    Torriani A. Effect of inorganic phosphate in the formation of phosphatases by E. coli. Biochim Biophys Acta 1960; 38:460–469.CrossRefGoogle Scholar
  9. 9.
    Horiuchi T, Horiuchi S, Mizuno D. A possible negative feedback phenomenon controlling formation of alkaline phosphorous esterase in Escherichia coli. Nature 1959; 183:1529–1530.CrossRefGoogle Scholar
  10. 10.
    Rothman F, Byrne R. Fingerprint analysis of alkaline phosphate of E. coli K12. J Mol Biol 1963; 6:330–340.CrossRefGoogle Scholar
  11. 11.
    Schlesinger MJ, Barrett K. The reversible dissociation of alkaline phosphatase of E. coli. J Biol Chem 1965; 240:4248–4292.Google Scholar
  12. 12.
    Schlesinger MJ, Reynolds JA, Schlesinger S. Formation and localization of the alkaline phosphatase of Escherichia coli. Ann N Y Acad Sci 1969; 166:368–379.CrossRefGoogle Scholar
  13. 13.
    Derman AL, Beckwith J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol 1991; 173:7719–7722.Google Scholar
  14. 14.
    Dohan FC Jr, Rubman RH, Torriani A. In vitro synthesis of E. coli alkaline phosphatase monomers. J Mol Biol 1971; 58:469–471.CrossRefGoogle Scholar
  15. 15.
    Inouye H, Pratt C, Beckwith J et al. Alkaline phosphatase synthesis in a cell-free system using DNA and RNA templates. J Mol Biol 1977; 110:75–87.CrossRefGoogle Scholar
  16. 16.
    Garen A, Otsuji N. Isolation of a protein specified by a regulator gene. J Mol Biol 1964; 8:841–852.CrossRefGoogle Scholar
  17. 17.
    Makino D, Shinagawa H, Nakata A. Regulation of the phosphate regulon in Escherichia coli K12: regulation and role of the regulatory gene phoR. J Mol Biol 1985; 8:231–240.CrossRefGoogle Scholar
  18. 18.
    Makino K, Shinagawa H, Amemura M et al. Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 1989; 210:551–559.CrossRefGoogle Scholar
  19. 19.
    Wanner BL, Latterell P. Mutants affected in alkaline phosphatase expression: evidence for multiple positive regulators for the phosphate regulon in Escherichia coli. Genetics 1980; 96:242–266.Google Scholar
  20. 20.
    Surin BP, Rosenberg H, Cox GB. Phosphate specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationship. J Bacteriol 1985; 161:189–198.Google Scholar
  21. 21.
    Echols H, Garen A, Garen S et al. Genetic control of repression of alkaline phosphatase in E. coli. J Mol Biol 1961; 3:425.CrossRefGoogle Scholar
  22. 22.
    Zuckier G, Torriani A. Genetic and physiological test of three phosphatespecific transport mutants of E. Coli. J Bacteriol 1981; 145:1249–1256.Google Scholar
  23. 23.
    Nakata A, Amemura M, Makino K et al. Genetic and biochemical analysis of the phosphate-specific transport system in E. coli. In: Torriani-Gorini A, Rothman F, Silver S et al, eds. Phosphate metabolism and cellular regulation in microorganisms. Washington: American Society for Microbiology, 1987:150–155.Google Scholar
  24. 24.
    Rosenberg H, Gerdes RG, Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol 1977; 131:505–511.Google Scholar
  25. 25.
    Willsky GR, Malamy MH. Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 1980; 144:356–365.Google Scholar
  26. 26.
    Lin ECC. Glycerol dissimilation and its regulation in bacteria. Ann Rev Microbiol 1976; 30:535–578.CrossRefGoogle Scholar
  27. 27.
    Argast M, Ludke D, Silhavy TU et al. A second transport system for sn-glycerol-3-phosphate in Escherichia coli. J Bacteriol 1978; 136:1070–1083.Google Scholar
  28. 28.
    Cox GB, Webb D, Godovan-Zimmerman J et al. Arg220 of the PstA protein is required for phosphate transport through the phosphate-specific transport system in E. coli but not for alkaline phosphatase repression. J Bacteriol 1988; 170:2283–2286.Google Scholar
  29. 29.
    Cox GB, Webb D, Rosenberg H. Specific amino acid residues in both the PstB and PstC proteins are required for phosphate transport by the E. coli Pst system. J Bacteriol 1989; 171:1531–1534.Google Scholar
  30. 30.
    Surin BP, Cox GB, Rosenberg H. Molecular studies on the phosphate-specific transport system of Escherichia coli. In: Torriani-Gorini A, Rothman FG, Silver S et al, eds. Phosphate metabolism and cellular regulation in microorganisms. Washington: American Society for Microbiology, 1987:145–149.Google Scholar
  31. 31.
    Muda M, Rao NN, Torriani A. The role of PhoU in phosphate transport and alkaline phosphatase regulation. J Bacteriol 1992; 174:8057–8064.Google Scholar
  32. 32.
    Steed PM, Wanner BL. Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU Operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 1993; 175:6797–6809.Google Scholar
  33. 33.
    Rao NN, Roberts MF, Torriani A et al. Effect of glpT and glpD mutations on expression of the phoA gene in Escherichia coli. J Bacteriol 1993; 175:74–79.Google Scholar
  34. 34.
    Zuckier G, Ingenito E, Torriani A. Pleiotropic effects of alkaline phosphatase regulatory mutations phoB and phoT on anaerobic growth of and polyphosphate synthesis in Escherichia coli. J Bacteriol 1980; 143:934–941.Google Scholar

Copyright information

© R.G. Landes Company 1996

Authors and Affiliations

  • Annamaria Torriani-Gorini

There are no affiliations available

Personalised recommendations