The Effect of Neutron Irradiation on the Structure of Titanium and Chromium Carbides

  • M. S. Koval’chenko
  • V. V. Ogorodnikov
  • A. G. Krainii
  • L. F. Ochkas
Part of the Studies in Soviet Science book series (STSS)


An x-ray study has been made of the change in lattice parameters of TiC and Cr7C3 irradiated in a reactor with integrated neutron fluxes of 1016, 1018, and 1020 neutrons/cm2. The broadening of the lines on the diffraction patterns of annealed, hot-compacted, and irradiated specimens has been investigated by means of harmonic analysis. The effect of compression on the change in lattice parameter of the irradiated carbides was also investigated. Analysis of the possible positions of the displaced atoms showed that the stable defect configuration in TiC is a dumbbell in the <111> direction. The energy stored in the form of static lattice distortions has been calculated from the change in volume of the unit cell on irradiation.


Neutron Irradiation Effective Temperature Titanium Carbide Interstitial Atom Chromium Carbide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    J. Vineyard, Uspekhi Fiz. Nauk, 74:435 (1961).Google Scholar
  2. 2.
    V. I. Gol’danskii and E. M. Leikin, Transformations in Atomic Nuclei [in Russian], Izd. Akad.Nauk SSSR, Moscow (1958).Google Scholar
  3. 3.
    S.S. Goreliki L. N. Rastorguev, and Yu. A. Chakov, Radiographic and Electron-Diffraction Analyses of Metals [in Russian], Metallurgizdat, Moscow (1964).Google Scholar
  4. 4.
    F. Seitz and I. S. Keller, in: Proceedings of an International Conference on the Peaceful Uses of Atomic Energy, Geneva (1955).Google Scholar
  5. 5.
    V. I. Iveronova and A. P. Zvyagina, Izv. Akad. Nauk SSSR, Ser. Fiz., 20:729 (1956).Google Scholar
  6. 6.
    M. S. Koval’chenko and V. V. Ogorodnikov, Poroshkovaya Met., No. 10, 48 (1966).Google Scholar
  7. 7.
    M. S. Koval’chenko and V. V. Ogorodnikov, At. Energ., 21:302 (1966).Google Scholar
  8. 8.
    M. S. Koval’chenko and V. V. Ogorodnikov, At. Energ., 22:138 (1967).Google Scholar
  9. 9.
    S. G. Konobeevskii, in: The Action of Nuclear Radiation on Materials [in Russian], Izd. Akad.Nauk SSSR, Moscow (1962), p. 5.Google Scholar
  10. 10.
    B. M. Levitskii and L. D. Panteleev, in: The Action of Nuclear Radiation on Materials [in Russian], Izd. Akad.Nauk SSSR, Moscow (1962), p. 209.Google Scholar
  11. 11.
    J. Ney, The Physical Properties of Crystals and Their Description in Terms of Tensors and Matrices [Russian translation], IL, Moscow (1960).Google Scholar
  12. 12.
    V. V. Ogorodnikov et al., Fiz.-Khim. Mekhan. Mat., 2:532 (1966).Google Scholar
  13. 13.
    B. Price, K. Horton, and K. Spinney, Protection from Nuclear Radiation [in Russian translation], IL, Moscow (1959).Google Scholar
  14. 14.
    G. V. Samsonov and K. I. Pornoi, Alloys Based on Refractory Compounds [in Russian], Oborongiz, Moscow (1961).Google Scholar
  15. 15.
    D. M. Kheiker and A. S. Zevin, X-Ray Diffractometry [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  16. 16.
    Ch’ien Hsüehsen, Physical Mechanics [in Russian], Mir, Moscow (1965), p. 220.Google Scholar
  17. 17.
    J. Eshelby, The Continuous Theory of Dislocations [Russian translation], IL, Moscow (1963).Google Scholar
  18. 18.
    A. Lieberman and W. Grandall, J. Am. Ceram. Soc., 35:304 (1952).CrossRefGoogle Scholar
  19. 19.
    D. Riley, Proc. Phys. Soc., 57:486 (1945).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1974

Authors and Affiliations

  • M. S. Koval’chenko
  • V. V. Ogorodnikov
  • A. G. Krainii
  • L. F. Ochkas

There are no affiliations available

Personalised recommendations