The Energy Structures of Titanium Carbide

  • E. A. Zhurakovskii
Part of the Studies in Soviet Science book series (STSS)


The spectra of titanium and carbon in the homogeneity range of titanium carbide (TiC0.54-1.0) were measured in small composition stages, under high resolution conditions. The carbide specimens were synthesized from high-purity raw materials under conditions conducive to the presence of a minimum amount of dissolved gases and free carbon in them. The combination of the K and L spectra of titanium, which are responsible for the p and d states of the metal, with the Kα band of carbon in the homogeneous carbides, which reflects mainly the 2p electron states of the carbon atom, enabled a number of considerations to be advanced in regard to the structure of the valence band of the carbide crystal and to the effect of carbon concentration on the energy spectrum.


Valence Band Titanium Carbide Titanium Atom Amyl Acetate Concave Spherical Surface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. P. Arbuzov and B. V. Khaenko, Poroshkovaya Met., No. 8 (1968).Google Scholar
  2. 2.
    M. A. Blokhin and A. T. Shuvaev, Izv. Akad.Nauk SSSR, Fiz., 26:429 (1962).Google Scholar
  3. 3.
    E. E. Vainshtein, X-Ray Spectra of Atoms in Molecules of Chemical Compounds and Alloys [in Russian], Nauka, Moscow and Leningrad (1966).Google Scholar
  4. 4.
    E. A. Zhurakovskii and E. E. Vainshtein, Dokl. Akad. Nauk SSSR, Vol. 122, No. 3 (1958);Google Scholar
  5. 4a.
    E. A. Zhurakovskii and E. E. Vainshtein, Dokl. Akad. Nauk SSSR, Vol. 127, No. 3 (1959);Google Scholar
  6. 4b.
    E. A. Zhurakovskii and E. E. Vainshtein, Dokl. Akad. Nauk SSSR, Vol. 129, No. 6 (1959);Google Scholar
  7. 4c.
    E. A. Zhurakovskii and E. E. Vainshtein, Dokl. Akad. Nauk SSSR, Vol. 140, No. 3 (1961).Google Scholar
  8. 5.
    Yu. P. Irkhin, Fiz. Metal, i Metalloved., 11:10 (1961).Google Scholar
  9. 6.
    A. P. Lukirskii and I. A. Brytov, Optika i Spektroskopiya, No. 12 (1966).Google Scholar
  10. 7.
    A. P. Lukirskii, Author’s Summary of Doctor’s Thesis, LGU, Leningrad (1963).Google Scholar
  11. 8.
    G. V. Samsonov and Ya. S. Umanskii, Hard Compounds of Refractory Metals [in Russian], Metallurgizdat, Moscow (1958).Google Scholar
  12. 9.
    Ya. S. Umanskii, Carbides in Hard Alloys [in Russian], Metallurgizdat, Moscow (1947).Google Scholar
  13. 10.
    A. T. Shuvaev, Author’s Summary of Candidate’s Thesis, RGU, Rostov-on-Don (1964).Google Scholar
  14. 11.
    H. Biltz, Z. Physik, 153:338 (1958).CrossRefGoogle Scholar
  15. 12.
    F. G. Chalklin, Proc. Roy. Soc., 194:1036 (1948).Google Scholar
  16. 13.
    C. A. Coulson and P. Taylor, Proc. Phys. Soc., 65(10):42A (1952).Google Scholar
  17. 14.
    V. Erne and A. C. Switendick, Phys. Rev., 137:6A (1965).Google Scholar
  18. 15.
    C. T. Kimball, J. Chem. Phys., 8:188 (1940).CrossRefGoogle Scholar
  19. 16.
    R. C. Lye and E. M. Logothetis, Phys. Rev., 147:2 (1966).CrossRefGoogle Scholar
  20. 17.
    P. Costa and R. R. Conte, International Symposium on Compounds of Interest in Nuclear Reactor Technology (1964), pp. 3–27.Google Scholar
  21. 18.
    D. A. Robins, Powder Metallurgy, 2:172 (1958).Google Scholar
  22. 19.
    R. Kiessling, Powder Metallurgy, 3:177 (1959).Google Scholar
  23. 20.
    E. Dempsey, Phil. Mag., 8:285 (1963).CrossRefGoogle Scholar
  24. 21.
    N. Engel, Trans. Am. Soc. Metals, 57:610 (1964).Google Scholar
  25. 22.
    Yu. N. Surovoi, L. A. Shvartsman, and V. I. Alekseev, Fiz. Metal. Metalloved., 20:80 (1965).Google Scholar
  26. 23.
    W. H. Phillipp, NASA, TN D-3533 (1966).Google Scholar
  27. 24.
    W. S. Williams, Science, 152:34 (1966).CrossRefGoogle Scholar
  28. 25.
    E. K. Storms, The Refractory Carbides, Academic Press, New York and London (1967).Google Scholar
  29. 26.
    H. J. Goldschmidt, Interstitial Alloys, Butterworths, London (1967).Google Scholar
  30. 27.
    J. E. Holliday, J. Appl. Phys., 38:4720 (1967).CrossRefGoogle Scholar
  31. 28.
    D. W. Fisher and W. L. Baun, J. Appl. Phys., 39:4757 (1968).CrossRefGoogle Scholar
  32. 29.
    S. P. Denker, J. Less-Common Metals, 14:4 (1968).CrossRefGoogle Scholar
  33. 30.
    L. Ramquist, J. Anal., Vol. 153 (1969).Google Scholar
  34. 31.
    L. N. Dobretsov, Electronic and Ionic Emission [in Russian], Moscow and Leningrad (1952).Google Scholar
  35. 32.
    N. S. Burernikova, Uspekhi Fiz. Nauk, 65:351 (1958).Google Scholar
  36. 33.
    L.N. Branscomb and D. S. Burch, Phys. Rev., 111:504 (1958).CrossRefGoogle Scholar
  37. 34.
    B. Edlen, J. Chem. Phys., 33:98 (1960).CrossRefGoogle Scholar
  38. 35.
    V.I. Vedeneev et al., Ionization Potentials and Electron Affinity [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962).Google Scholar

Copyright information

© Consultants Bureau, New York 1974

Authors and Affiliations

  • E. A. Zhurakovskii

There are no affiliations available

Personalised recommendations