Study of the Phase Equilibria in the System Tantalum—Vanadium—Carbon in the Range 0–33 at.% C

  • L. A. Tret’yachenko
  • S. A. Komarova
  • V. N. Eremenko
Part of the Studies in Soviet Science book series (STSS)


The phase equilibria in the system Ta-V-C have been investigated at 1600°C in the range from 0 to 33 at.%C, and a projection of the solidus surface in this range has been constructed. It was found that in the region investigated the ternary system Ta-V-C is characterized by the existence of equilibrium between the carbide solid solutions (Ta,V)2C1−x and the metallic phase based on the Ta-V solid solutions. The carbide phase is richer in tantalum than the metallic phase coexisting with it. The change in the lattice parameters in the continuous series of solid solutions (Ta,V)2C1−x has been determined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. T. Grigor’ev et al., Vestn. MGU, Ser. Khim., 4:44 (1965).Google Scholar
  2. 2.
    L. B. Dubrovskaya, G. P. Shveikin, and P. V. Gel’d, Fiz. Metal. i Metalloved., 17:73 (1964).Google Scholar
  3. 3.
    A. E. Kovarskii and L. A. Petrova, Microhardness [in Russian], Izd. Akad. Nauk SSSR, Moscow (1951).Google Scholar
  4. 4.
    A. P. Nefedov et al., Vestn. MGU, Ser. Khim., 5:42 (1965).Google Scholar
  5. 5.
    A. P. Nefedov et al., Izv. Akad. Nauk SSSR, Neorg. Mat., 1:715 (1965).Google Scholar
  6. 6.
    V. A. Somenkov, Izv. Akad. Nauk SSSR, Neorg. Mat., 2:464 (1966).Google Scholar
  7. 7.
    M. Yu. Teslyuk, Author’s Summary of Candidate’s Thesis, L’vov (1965).Google Scholar
  8. 8.
    L. A. Tret’yachenko and V. N. Eremenko, Izv. Akad. Nauk SSSR, Neorg. Mat., 2:1568 (1966).Google Scholar
  9. 9.
    F. H. Ellinger, Trans. Am. Soc. Metals, 31:81 (1943).Google Scholar
  10. 10.
    E. Fromm and U. Roy, J. Less-Common Metals, 8:79 (1966).Google Scholar
  11. 11.
    E. Gebhardt, E. Fromm, and U. Roy, Z. Metallk., 57:682 (1966).Google Scholar
  12. 12.
    H. J. Goldschmidt, J. Less-Common Metals, 2:138 (1960).CrossRefGoogle Scholar
  13. 13.
    K. Kuo, Acta Metall., 1:301 (1953).CrossRefGoogle Scholar
  14. 14.
    M. R. Nadler and C. P. Kempter, J. Phys. Chem., 64:1458 (1960).CrossRefGoogle Scholar
  15. 15.
    J. T. Norton and A. L. Mowry, Trans. Am. Inst. Min. Metall. Eng., 185:133 (1949).Google Scholar
  16. 16.
    H. Nowotny and R. Kieffer, Metallforschung, 2:257 (1947).Google Scholar
  17. 17.
    H. R. Ogden, F. F. Schmidt, and E. S. Bartlett, Trans. Metall. Soc., AIME, 227:1458 (1963).Google Scholar
  18. 18.
    M. L. Pochon, C. R. McKinsey, R. A. Perkins, and W. D. Forgeng, Reactive Metals, New York (1959), p. 307.Google Scholar
  19. 19.
    E. Rudy and F. Benesovsky, Planseeber. Pulvermet., 8(2):72 (1960).Google Scholar
  20. 20.
    E. Rudy, Z. Metallk., 54:112 (1963).Google Scholar
  21. 21.
    E. K. Storms and R. J. McNeal, J. Phys. Chem., 66:1401 (1962).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1974

Authors and Affiliations

  • L. A. Tret’yachenko
  • S. A. Komarova
  • V. N. Eremenko

There are no affiliations available

Personalised recommendations