Advertisement

The Phase Diagram of the System Titanium—Molybdenum—Carbon

  • V. N. Eremenko
  • T. Ya. Velikanova
  • S. V. Shabanova
Part of the Studies in Soviet Science book series (STSS)

Abstract

The phase diagram of the boundary system Mo-C has been redetermined at high carbon contents. A higher carbide of molybdenum (cubic, NaCl type of lattice, homogeneity range 37–40 at.% C) has been found to form by a peritectic reaction at 2560°C; at 2000–2200°C this undergoes a polymorphic transformation into the low-temperature hexagonal form, which subsequently, at 1630°C, decomposes into the lower carbide and carbon. A phase transformation occurs in the lower carbide of molybdenum at 1170°C. The phase diagram of the ternary Ti-Mo-C system has been determined. Its principal features are: the system is divided into two triangles by the Mo-TiC section; the cubic carbides of molybdenum and titanium form a continuous series of solid solutions; at low temperatures titanium stabilizes the phase based on the higher hexagonal carbide of molybdenum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. N. Eremenko, Titanium and Its Alloys [in Russian], Izd. Akad. Nauk UkrSSR, Kiev (1960).Google Scholar
  2. 2.
    V. N. Eremenko, Z. I. Tolmacheva, and T. Ya. Velikanova, in: Investigations of High-Temperature Alloys [in Russian], Vol. 8, Izd. Akad. Nauk SSSR, Moscow (1962), p. 95.Google Scholar
  3. 3.
    V. N. Eremenko and T. Ya. Velikanova, Poroshkovaya Met., No. 5, 3 (1963).Google Scholar
  4. 4.
    V. N. Eremenko, T. Ya. Velikanova, and S. V. Shabanova, in: New Studies of Titanium Alloys [in Russian], Nauka, Moscow (1965).Google Scholar
  5. 5.
    R. Kieffer and P. Schwartzkopf, Hard Alloys [Russian translation], Metallurgiz-dat, Moscow (1957).Google Scholar
  6. 6.
    A. E. Koval’skii and Ya. S. Umanskii, Zh. Fiz. Khim., 20:769, 773, 929 (1946).Google Scholar
  7. 6a.
    A. E. Koval’skii and Ya. S. Umanskii, Zh. Fiz. Khim., 20:773, (1946).Google Scholar
  8. 6b.
    A. E. Koval’skii and Ya. S. Umanskii, Zh. Fiz. Khim., 20: 929 (1946).Google Scholar
  9. 7.
    L. P. Mol’kov and I. V. Vikker, Vestn. Metalloprom., 16:75 (1936).Google Scholar
  10. 8.
    S. S. Ordan’yan, A. M. Avgustinik, and V. S. Vigdergauz, in: Researches in the Field of the Chemistry of Silicates and Oxides [in Russian], Nauka, Moscow (1965), p. 220.Google Scholar
  11. 9.
    S. S. Ordan’yan, A. A. Kraskovskaya, and A. I. Avgustinik, Izv. Akad. Nauk SSSR, Neorg. Mat., 2:299 (1966).Google Scholar
  12. 10.
    G. V. Samsonov and Ya. S. Umanskii, Hard Compounds of Refractory Metals [in Russian], Metallurgizdat, Moscow (1957).Google Scholar
  13. 11.
    Ya. S. Umanskii, Izv. Akad. Nauk SSSR, Fiz.-Khim. Anal., 16(1):127 (1943).Google Scholar
  14. 12.
    T. F. Fedorov, Yu. B. Kuz’ma, and L. V. Gorshkova, Poroshkovaya Met., No. 3, 69 (1965).Google Scholar
  15. 13.
    M. Hansen and K. Anderko, The Structure of Binary Alloys (Russian translation), Metallurgizdat, Moscow (1962).Google Scholar
  16. 14.
    H. Albert and J. Norton, Planseeber, Pulvermet., 4:2 (1956).Google Scholar
  17. 15.
    I. Cadoff and J. P. Nielsen, Trans. Am. Inst. Min. Metal. Eng., 197:248 (1953).Google Scholar
  18. 16.
    M. Hansen, E. Kamen, H. Kessler, and D. McPherson, Trans. Am. Inst. Min. Metal. Eng., 191:881 (1951).Google Scholar
  19. 17.
    M. Gleiser and J. Chipman, J. Phys. Chem., 66:1532 (1963).Google Scholar
  20. 18.
    H. Kimura and J. Sasaki, Trans. Japan Inst. Metals, 2(1):98 (1961).CrossRefGoogle Scholar
  21. 19.
    Y. Muracami, H. Kimura, and Y. Nishimura, J. Japan Inst. Metals, 21:665 (1957).CrossRefGoogle Scholar
  22. 20.
    Y. Muracami, H. Kimura, and Y. Nishimura, J. Japan Inst. Metals, 21:712 (1957).CrossRefGoogle Scholar
  23. 21.
    Y. Muracami, H. Kimura, and Y. Nishimura, Mem. Fac. Engng. Kyoto Univ., 19:302 (1957).Google Scholar
  24. 22.
    Y. Nishimura and H. Kimura, J. Japan Inst. Metals, 20:528 (1956).CrossRefGoogle Scholar
  25. 23.
    Y. Nishimura and H. Kimura, J.Japan Inst. Metals, 20:589 (1956).CrossRefGoogle Scholar
  26. 24.
    H. Nowotny, E. Parthe, R. Kieffer, and F. Benesovsky, Monatsh. Chem., 85:255 (1954).CrossRefGoogle Scholar
  27. 25.
    Physical Chemistry of Metals (Metallurgy and Metallurgical Engineering Series), McGraw-Hill, New York (1953).Google Scholar
  28. 26.
    E. Rudy, F. Benesovsky, and L. Toth, Z. Metallk., 54:345 (1963).Google Scholar
  29. 27.
    E. Rudy, El. Rudy, and F. Benesovsky, Planseeber. Pulvermet., 10(1/2):42 (1962).Google Scholar
  30. 28.
    E. Rudy, F. Benesovsky, and Sedlathek, Monatsh. Chem., 92:841 (1961).CrossRefGoogle Scholar
  31. 29.
    W. P. Sykes, K. R. Van Horn, and C. M. Tucker, Trans. Am. Inst. Min. Metal. Eng., 117:173 (1935).Google Scholar
  32. 30.
    T. C. Wallace, C. P. Guttierez, and P. L. Stone, J. Phys. Chem., 67:796 (1963).CrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1974

Authors and Affiliations

  • V. N. Eremenko
  • T. Ya. Velikanova
  • S. V. Shabanova

There are no affiliations available

Personalised recommendations