Internal-Reflection Spectroscopy of Nonaqueous Solvent Systems: Halides in Liquid Sulfur Dioxide

  • D. F. Burow
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 7b)


Infrared spectra of several halide and pseudohalide salt solutions in liquid sulfur dioxide as well as that of the pure solvent were obtained using internal-reflection techniques. Perturbation of the solvent S-O symmetrical and asymmetrical stretch frequencies occurs in iodide, thiocyanate, and some bromide solutions. Solvation of anions in liquid sulfur dioxide is discussed in terms of a charge-transfer interaction.


Infrared Spectrum Acetonitrile Solution Ammonium Iodide Effective Path Length Attain Room Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Jander, Die Chemie in Wasserahnlichen Lösungsmitteln, Springer-Verlag, Berlin (1949), p. 209.Google Scholar
  2. 2.
    L. F. Audrieth and J. Kleinberg, Non-Aqueous Solvents, John Wiley and Sons, New York, (1953), p. 210.Google Scholar
  3. 3.
    N. N. Lichtin, Ionization and Dissociation Equilibria in Solution in Liquid Sulfur Dioxide, in: Progress in Physical Organic Chemistry, Vol. 1, (S. G. Cohen, A. Streitwieser, and R. W. Taft, eds.), Interscience Publishers, New York (1963), p. 75.CrossRefGoogle Scholar
  4. 4.
    T. C. Waddington, Liquid Sulfur Dioxide, in: Non-Aqueous Solvent Systems (T. C. Waddington, ed.), Academic Press, New York, (1965), p. 253.Google Scholar
  5. 5.
    E. R. Lippincott and F. E. Welsh, Spectrochim. Acta 17, 123 (1961).CrossRefGoogle Scholar
  6. 6.
    N. J. Harrick, Internal Reflection Spectroscopy, Interscience Publishers, New York (1967).Google Scholar
  7. 7.
    A. Anderson and R. Savoie, Can. J. Chem 43, 2271 (1965).CrossRefGoogle Scholar
  8. 8.
    H. Gerding and W. J. Nijveld, Nature 137, 1070 (1936).CrossRefGoogle Scholar
  9. 9.
    R. N. Wiener and E. R. Nixon, J. Chem. Phys. 25, 175 (1956).CrossRefGoogle Scholar
  10. 10.
    P. A. Giguere and M. Faulk, Can. J. Chem. 34, 1833 (1956).Google Scholar
  11. 11.
    R. D. Sheldon, A. H. Nielsen, and W. H. Fletcher, J. Chem. Phys. 21, 2178 (1953).CrossRefGoogle Scholar
  12. 12.
    R. S. Drago and K. F. Purcell, The Coordination Model for Nonaqueous Solvent Behavior, in: Progress in Inorganic Chemistry, Vol. 6, (F. A. Cotton, ed.), Interscience Publishers, New York (1964), p. 271.CrossRefGoogle Scholar
  13. 13.
    A. J. Parker, Quart. Rev. 16, 163 (1962).CrossRefGoogle Scholar
  14. 14.
    R. S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952);CrossRefGoogle Scholar
  15. 14a.
    J. Phys. Chem. 56, 801 (1952).CrossRefGoogle Scholar
  16. 15.
    A. D. Walsh, J. Chem. Soc. 1953, 2266Google Scholar
  17. 16.
    L. Pauling, J. Phys. Chem. 56, 361 (1952)CrossRefGoogle Scholar
  18. 17.
    G. Herzberg, Infrared and Raman Spectroscopy, D. Van Nostrand Company, New York, (1945), p. 160.Google Scholar
  19. 18.
    M. Smith and M. C. R. Symons, Discussions Faraday Soc. 24, 206 (1957).CrossRefGoogle Scholar
  20. 19.
    G. Stein and A. Treinin, Trans. Faraday Soc. 55, 1086 (1959);CrossRefGoogle Scholar
  21. 19a.
    G. Stein and A. Treinin, Trans. Faraday Soc. 55, 1091 (1959);CrossRefGoogle Scholar
  22. 19b.
    G. Stein and A. Treinin, Trans. Faraday Soc. 56, 1393 (1960).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1970

Authors and Affiliations

  • D. F. Burow
    • 1
  1. 1.Department of ChemistryMichigan State UniversityEast LansingUSA

Personalised recommendations