Raman Spectroscopy of Polymeric Materials. Part I—Selected Commercial Polymers

  • Dorothy S. Cain
  • Albert B. Harvey
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 7b)


The He—Ne laser has greatly reduced the problem of fluorescence which has in the past almost completely obscured conventionally excited (mercury arc) Raman spectra of all except the simplest and purest polymers. In many instances it is now possible to record Raman spectra of polymers without any prior purification whatever. Reported here are laser-excited Raman spectra of twelve selected commercial polymeric materials and their infrared counterparts. The complementary nature of Raman and infrared spectroscopy is apparent from vibrations such as C=C stretching (in polybutadiene) and S-S and C-S stretching (in polysulfide rubber) which give rise to strong Raman lines but produce weak infrared absorption bands. Conversely, the C=O group of polycarbonates and polyesters is a strong infrared absorber which produces a weak Raman line.


Raman Spectrum Raman Spectroscopy Natural Rubber Raman Line Instrument Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Nielsen, J. Polymer Sci., Part C, 7, 19 (1964).CrossRefGoogle Scholar
  2. 2.
    R. F. Schaufele, Trans. N. Y. Acad. Sci. 30, 69 (1967).CrossRefGoogle Scholar
  3. 3.
    R. E. Kagarise and L. A. Weinberger, Infrared Spectra of Plastics and Resins, Naval Research Laboratory Report 4369 (May 26, 1954).Google Scholar
  4. 4.
    S. S. Stimler and R. E. Kagarise, Infrared Spectra of Plastics and Resins, Part 2 — Materials Developed Since 1954, Naval Research Laboratory Report 6392 (May 23, 1966).Google Scholar
  5. 5.
    D. S. Cain and S. S. Stimler, Infrared Spectra of Plastics and Resins, Part 3 — Related Polymeric Materials (Elastomers), Naval Research Laboratory Report 6503 (Feb. 28, 1967).Google Scholar
  6. 6.
    M. C. Tobin, J. Opt. Soc. Am. 49, 850 (1959).CrossRefGoogle Scholar
  7. 7.
    R. G. Brown, J. Chem Phys. 38, 221 (1963).CrossRefGoogle Scholar
  8. 8.
    J. R. Nielsen and A. H. Woollett, J. Chem. Phys. 26, 1391 (1957).CrossRefGoogle Scholar
  9. 9.
    V. N. Nikitin and L. I. Maklakov, Opt. Spectry. USSR 17, 242 (1964).Google Scholar
  10. 10.
    R. Signer and J. Weiler, Helv. Chim. Acta 15, 649 (1932).CrossRefGoogle Scholar
  11. 11.
    R. C. Lord, D. W. Robinson, and W. C. Schumb, J. Am. Chem. Soc. 78, 1327 (1956).CrossRefGoogle Scholar
  12. 12.
    R. F. Curl, Jr. and K. S. Pitzer, J. Am. Chem. Soc. 80, 2371 (1958).CrossRefGoogle Scholar
  13. 13.
    J. R. Ferraro, J. S. Ziomek, and G. Mack, Spectrochim. Acta 17, 802 (1961).CrossRefGoogle Scholar
  14. 14.
    Y. Matsui, T. Kubota, H. Tadokoro, and T. Yoshihara, J. Polymer Sci., Part A, 3, 2275 (1965).Google Scholar
  15. 15.
    H. Tadokoro, A. Kobayashi, Y. Kawaguchi, S. Sobajima, S. Murahashi, and Y. Matsui, J. Chem. Phys. 35, 369 (1961).CrossRefGoogle Scholar
  16. 16.
    S. W. Cornell and J. L. Koenig, Laser Excited Raman Scattering in Polystyrene, Case Western Reserve University., T. R. No. 84 (April 26, 1968).Google Scholar
  17. 17.
    P. J. Hendra and H. A. Willis, Chem. Comm. 1968, 225.Google Scholar
  18. 18.
    H. Tadokoro, M. Kobayashi, M. Ukita, K. Yasufuku, S. Murahashi, and T. Torii, J. Chem. Phys. 42, 1432 (1965).CrossRefGoogle Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1970

Authors and Affiliations

  • Dorothy S. Cain
    • 1
  • Albert B. Harvey
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations