Structural Basis and Energetics of Peptide Membrane Interactions

  • Huey W. Huang


Over the past twenty-five years, tremendous progress has been made in understanding the physical properties of lipid bilayer membranes (Israelachvili, 1992; Lipowsky et al, 1991; Nelson et al, 1989). It seems appropriate to ask how the properties of lipid bilayers are related to the interaction of membranes with proteins. In this chapter, I will review our own work on the problem of membrane active peptides, in particular on the biological function of small amphiphilic helix-forming peptides.


Lipid Bilayer Peptide Molecule Pumpkin Seed Bilayer Thickness Gramicidin Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asher SA, Pershan PS (1979): Alignment and defect structures in oriented phosphatidylcholine multilayers. Biophys J 27:137–152CrossRefGoogle Scholar
  2. Bacon GE (1975): Neutron Diffraction, 3rd Ed. Oxford: Clarendon PressGoogle Scholar
  3. Bessalle R, Kapitkovsky A, Gorea A, Shalit I, Fridkin M (1990): All-D-magainin: chirality, antimicrobial activity and proteolytic resistance. FEBS Lett 274:151–155PubMedCrossRefGoogle Scholar
  4. Blaurock AE (1971): Structure of the nerve myelin membrane: proof of the low resolution profile J Mol Biol 56:35–52PubMedCrossRefGoogle Scholar
  5. Boman HG, Marsh J, Goode JA (1994): Antimicrobial Peptides. Chichester, England: John Wiley and SonsGoogle Scholar
  6. Caillé A (1972): Remarques sur la diffusion des rayons X dans les smectiques. C R Acad Sci Serie 5 274:891–893Google Scholar
  7. Chiruvolu S, Warriner HE, Naranjo E, Idziak S, Radler JO, Plano RJ, Zasadzinski JA, Safinya CR (1994): A phase of liposomes with entangled tubular vesicles. Science 266:1222–1225PubMedCrossRefGoogle Scholar
  8. Cruciani RA, Barker JL, Zasloff M, Chen H-C, Colamonici O (1991): Antibiotic maga-inins exert cytolytic activity against transformed cell lines through channel formation. Proc Natl Acad Sci USA 88:3792–3796PubMedCrossRefGoogle Scholar
  9. De Gennes PG (1969): Conjectures sur l’état smectique. J Phys France 30:65–71Google Scholar
  10. Fox RO, Richards FM (1982): A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Â resolution. Nature 300:325–330PubMedCrossRefGoogle Scholar
  11. Franks NP, Lieb WR (1979): The structure of lipid bilayers and the effects of general anaesthetics: an x-ray and neutron diffraction study. J Mol Biol 133:469–500PubMedCrossRefGoogle Scholar
  12. Gibson BW, Tang D, Mandrell R, Kelly M, Spindel ER (1991): Bombinin-like peptides with antimicrobial activity from skin secretions of the asian toad, Bombina orientalis. J Biol Chem 266:23103–23111Google Scholar
  13. Habermann E (1972): Bee and wasp venoms Science 177:314–322PubMedCrossRefGoogle Scholar
  14. He K, Ludtke SJ, Huang HW, Worcester DL (1995a): Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34:15614–15618PubMedCrossRefGoogle Scholar
  15. He K, Ludtke SJ, Huang HW, Worcester DL (1995b): Neutron Scattering in the Plane of Membrane: Structure of Alamethicin Pores. Biophys J: submittedGoogle Scholar
  16. He K, Ludtke SJ, Wu Y, Huang HW, Andersen OS, Greathouse D, Koeppe RE (1994): Closed State of Gramicidin Channel Detected by X-ray In-Plane Scattering Biophys Chem 49:83–89PubMedCrossRefGoogle Scholar
  17. He K, Ludtke S J, Wu Y, Huang HW (1993a): X-ray scattering with momentum transfer in the plane of membrane: application to gramicidin organization. Biophys J 64:157–162PubMedCrossRefGoogle Scholar
  18. He K, Ludtke SJ, Wu Y, Huang HW (1993b): X-ray scattering in the plane of membrane. J Phys France IV 3:265–270CrossRefGoogle Scholar
  19. Helfrich W (1973): Elastic properties of lipid bilayers: theory and possible experiment. Z Naturforsch 28C:693–703Google Scholar
  20. Hladky SB, Gruen DWR (1982): Thickness fluctuations in black lipid membranes. Biophys J 3S:25l-158Google Scholar
  21. Huang HW (1995): Elasticity of lipid bilayer interacting with amphiphilic helical peptide. J Phys II France 5:1427–1431CrossRefGoogle Scholar
  22. Huang HW (1986): Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys J 50:1061–1070PubMedCrossRefGoogle Scholar
  23. Huang HW, Olah G A (1987): Uniformly Oriented Gramicidin Channels Embedded in Thick Monodomain Lecithin Multilayers. Biophys J 51:989–992PubMedCrossRefGoogle Scholar
  24. Huang HW, Wu Y (1991): Lipid-alamethicin interactions influence alamethicin orientation. Biophys J 60:1079–1087PubMedCrossRefGoogle Scholar
  25. Israelachvili J (1992): Intermolecular and Surface Forces. London: Academic PressGoogle Scholar
  26. Jen W-C, Jones GA, Brewer D, Parkinson VO, Taylor A (1987): The antibacterial activity of alamethicin and zervamicins. J Applied Bacteriology 63:293–298CrossRefGoogle Scholar
  27. Juretic D, Chen H-C, Brown JH, Morell JL, Hendler RW, Westerhoff HV (1989): Mag-ainin 2 amide and analogues. FEBS Lett 249:219–223PubMedCrossRefGoogle Scholar
  28. Latorre R, Alvarez S (1981): Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev 61:77–150PubMedGoogle Scholar
  29. Lee JY, Boman A, Chuanxin S, Andersson M, Jornvall H, Mutt V Boman HG (1989): Antibacterial peptides form pig intestine: Isolation of a mammalian cecropin. Proc Natl Acad Sei USA 86:9159–9162CrossRefGoogle Scholar
  30. Lipowsky R, Richter D, Kremer K (1991): The Structure and Conformation of Amphiphilic Membranes. Berlin: Springer-VerlagGoogle Scholar
  31. Ludtke SJ, He K, Huang HW (1995): Membrane thinning caused by magainin 2. Biochemistry 34:16764–16769PubMedCrossRefGoogle Scholar
  32. Ludtke SJ, He K, Wu Y, Huang HW (1994): Cooperative membrane insertion of magainin correlated woth its cytolytic activity. Biochim Biophys Acta 1190:181–184PubMedCrossRefGoogle Scholar
  33. Matsuzaki K, Sugishita K, Fujii N, Miyajima K (1995): Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34:3423–3429.PubMedCrossRefGoogle Scholar
  34. Moffitt W (1956): Optical rotatory dispersion of helical polymers. J Chem Phys 25:467–478CrossRefGoogle Scholar
  35. Mou J, Czajkowsky DM, Shao Z (1995): Gramicidin A aggregation in supported gel-state phosphatidylcholine bilayers. Biochemistry: in pressGoogle Scholar
  36. Nagle JF, Wilkinson DA (1978): Lecithin bilayers: density measurements and molecular interactions. Biophys J 23:159–175PubMedCrossRefGoogle Scholar
  37. Nallet F, Laversanne R, Roux D (1993): Modelling x-ray or neutron scattering spectra of lyotropic lamellar phases: interplay between form and structure factors. J Phys II France 3:487–502CrossRefGoogle Scholar
  38. Nelson D, Piran T, Weinberg S (1989): Statistical Mechanics of Membranes ans Surfaces. Singapore: World ScientificGoogle Scholar
  39. Olah GA, Huang HW (1988): Circular dichroism of oriented α helices. I. Proof of the exciton theory. J Chem Phys 89:2531–2537CrossRefGoogle Scholar
  40. Pearson LT, Edelman J, Chan SI (1984): Statistical mechanics of lipid membranes. Protein correlation functions and lipid ordering. Biophys J 45:863–871PubMedCrossRefGoogle Scholar
  41. Pershan PS, Braslau A, Weiss AH, Ais-Nielsen J (1987): Smectic layering at the free surface of liquid crystals in the nematic phase: x-ray reflectivity. Phys Rev A 35:4800–4813PubMedCrossRefGoogle Scholar
  42. Powers L, Pershan PS (1977): Monodomain samples dipalmitoyl-phosphatidylcholine with varying concentrations of water and other ingredients. Biophys J 20:137–152PubMedCrossRefGoogle Scholar
  43. Sahl HG (1991): Pore formation in bacterial membranes by cationic lantibiotics. In: Nisin and novel lantibiotics, Jung G and Sahl HG, eds. Leiden, Netherlands: EscomGoogle Scholar
  44. Steiner H, Hultmark D, Engström A, Bennich H, Boman HG (1981): Sequence and specificity of two antibacterial proteins involved in insect immunity Nature 292 246–248PubMedCrossRefGoogle Scholar
  45. Vogel H (1987): Comparison of the conformation and orientation of alamethicin and melittin in lipid membranes. Biochemistry 26:4562–4572PubMedCrossRefGoogle Scholar
  46. Wade D, Boman A, Wåhlin B, Drain CM, Andreu D, Boman HG, Merrifield RB (1990): All-D amino acid-containing channel-forming antibiotic peptides. Proc Natl Acad Sci USA 87:4761–4765PubMedCrossRefGoogle Scholar
  47. Warren BE (1990): X-ray Diffraction. New York: DoverGoogle Scholar
  48. Watson GN (1966): Theory of Bessel Functions. Cambridge, England: Cambridge University PressGoogle Scholar
  49. Westerhoff HV, Juretic D, Hendler RW, Zasloff M (1989): Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci USA 85:910–913Google Scholar
  50. Wu Y, Huang HW, Olah GA (1990): Method of Oriented Circular Dichroism Biophys J 57:797–806PubMedCrossRefGoogle Scholar
  51. Wu Y, He K, Ludtke SJ, Huang HW (1995): X-ray diffraction study of lipid bilayer membrane interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys J 68:2361–2369PubMedCrossRefGoogle Scholar
  52. Zasloff M (1987): Magainins, a class of antimicrobial peptides form Xenopus skin: Isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • Huey W. Huang

There are no affiliations available

Personalised recommendations