Membrane Structure and Dynamics Studied with NMR Spectroscopy

  • Michael F. Brown


Biomembranes mediate the diverse functions of life and comprise mainly lipids and proteins, together with carbohydrates associated with the cellular and organelle surfaces. Present knowledge indicates that the lipids typically form a bilayer containing proteins that span the membrane or are attached to its surface. The lipid and protein moieties are amphiphilic, i.e., part of the molecule is polar and preferentially associated with water, whereas part is nonpolar and only sparingly soluble in aqueous media. The hydrophobic effect (Tanford, 1980) is thus an important determinant of the self-assembly of the lipids and proteins into biological membranes. In the liquid-crystalline state, as found in native membranes, the polar head groups of the lipids are on the exterior of the bilayer; whereas the nonpolar hydrocarbon chains are sequestered away from water, within the membrane interior. The lipid bilayer represents the fundamental permeability barrier to the passage of ions and polar molecules into or out of a cell or organelle. In addition the bilayer lipids play a role in the vectorial organization of membrane components. On the other hand, the distinctive functions of biological membranes are largely due to proteins, which may be influenced by lipid-protein interactions.


Acyl Chain Coupling Tensor Main Magnetic Field Quadrupolar Frequency Chemical Shift Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam A (1961): The Principles of Nuclear Magnetism. London: Oxford University PressGoogle Scholar
  2. Akutsu H, Seelig J (1981): Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry 20:7366–7373PubMedCrossRefGoogle Scholar
  3. Altbach MI, Mattingly M, Brown MF, Gmitro AF (1991): Magnetic resonance imaging of lipid deposits in human atheroma via a stimulated-echo diffusion technique. Magn Reson Med 20:319–326PubMedCrossRefGoogle Scholar
  4. Atkins PW (1990): Physical Chemistry, 4th Ed. San Francisco: FreemanGoogle Scholar
  5. Auger M, Carrier D, Smith ICP, Jarrell HC (1990): Elucidation of motional modes in glycoglycerolipid bilayers. A 2H NMR relaxation and line-shape study. J Am Chem Soc 112:1373–1381CrossRefGoogle Scholar
  6. Barry JA, Trouard TP, Salmon A, Brown MF (1991): Low temperature 2H NMR spectroscopy of phospholipid bilayers containing docosahexaenoyl (22:6ω3) chains. Biochemistry 30:8386–8394PubMedCrossRefGoogle Scholar
  7. Bax A (1989): Two-dimensional NMR and protein structure. Ann Rev Biochem 58:223–256PubMedCrossRefGoogle Scholar
  8. Blinc R, Luzar M, Vilfan M, Burgar M (1975): Proton spin-lattice relaxation in smectic TBBA. J Chem Phys 63:3445–3451CrossRefGoogle Scholar
  9. Bloom M, Morrison C, Sternin E, Thewalt JL (1992): Spin echoes and the dynamic properties of membranes. In: Pulsed Magnetic Resonance: NMR, ESR, Optics, Bagguley DMS, ed. Oxford: Clarendon PressGoogle Scholar
  10. Bonmatin J-M, Smith ICP, Jarrell HC, Siminovitch DJ (1990): Use of a comprehensive approach to molecular dynamics in ordered lipid systems: cholesterol reorientation in ordered lipid bilayers. A 2H NMR relaxation case study. J Am Chem Soc 112:1697–1704CrossRefGoogle Scholar
  11. Braun W, Wider G, Lee KH, Wüthrich K (1983): Conformation of glucagon in a lipid-water interphase by 1H nuclear magnetic resonance. J Mol Biol 169:921–948PubMedCrossRefGoogle Scholar
  12. Brink DM, Satchler GR (1968): Angular Momentum. London: Oxford University PressGoogle Scholar
  13. Brown MF (1996): Influences of membrane lipids on the photochemical function of rhodopsin. In: Structure and Biological Roles of Lipids Forming Non-Lamellar Structures, Epand RM, ed. Greenwich: JAI PressGoogle Scholar
  14. Brown MF (1994): Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids 73:159–180PubMedCrossRefGoogle Scholar
  15. Brown MF (1990): Anisotropic nuclear spin relaxation of cholesterol in phospholipid bilayers. Mol Phys 71:903–908CrossRefGoogle Scholar
  16. Brown MF (1984a): Theory of spin-lattice relaxation in lipid bilayers and biological membranes: dipolar relaxation. J Chem Phys 80:2808–2831CrossRefGoogle Scholar
  17. Brown MF (1984b): Unified picture for spin-lattice relaxation of lipid bilayers and biomembranes. J Chem Phys 80:2832–2836CrossRefGoogle Scholar
  18. Brown MF (1982): Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J Chem Phys 77:1576–1599CrossRefGoogle Scholar
  19. Brown MF (1979): Deuterium relaxation and molecular dynamics in lipid bilayers. J Magn Reson 35:203–215Google Scholar
  20. Brown MF, Chan SI (1995): Bilayer membranes: deuterium & carbon-13 NMR. In: Encylcopedia of Nuclear Magnetic Resonance, Grant DM, Harris RK, eds. New York: WileyGoogle Scholar
  21. Brown MF, Davis JH (1981): Orientation and frequency dependence of the deuterium spin-lattice relaxation in multilamellar phospholipid dispersions: implications for dynamic models of membrane structure. Chem Phys Lett 79:431–435CrossRefGoogle Scholar
  22. Brown MF, Seelig J (1978): Influences of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry 17:381–384PubMedCrossRefGoogle Scholar
  23. Brown MF, Seelig J (1977): Ion-induced changes in head group conformation of lecithin bilayers. Nature 269:721–723CrossRefGoogle Scholar
  24. Brown MF, Söderman O (1990): Orientational anisotropy of nuclear spin relaxation in phospholipid membranes. Chem Phys Lett 167:158–164CrossRefGoogle Scholar
  25. Brown MF, Deese AJ, Dratz EA (1982): Proton, carbon-13, and phosphorus-13 NMR methods for the investigation of rhodopsin-lipid interactions in retinal rod outer segment membranes. Methods Enzymol 81:709–728PubMedCrossRefGoogle Scholar
  26. Brown MF, Ellena JF, Trindle C, Williams GD (1986): Frequency dependence of spin-lattice relaxation times of lipid bilayers. J Chem Phys 84:465–470CrossRefGoogle Scholar
  27. Brown MF, Miljanich GP, Dratz EA (1977): Interpretation of 100- and 360-MHz proton magnetic resonance spectra of retinal rod outer segment disk membranes. Biochemistry 16:2640–2648PubMedCrossRefGoogle Scholar
  28. Brown MF, Ribeiro AA, Williams GD (1983): New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci USA 80:4325–4329PubMedCrossRefGoogle Scholar
  29. Brown MF, Salmon A, Henriksson U, Söderman O (1990): Frequency dependent 2H NMR relaxation rates of small unilamellar phospholipid vesicles. Mol Phys 69:379–383CrossRefGoogle Scholar
  30. Brown MF, Seelig J, Häberlen U (1979): Structural dynamics in phospholipid bilayers from deuterium spin-lattice relaxation time measurements. J Chem Phys 70:5045–5053CrossRefGoogle Scholar
  31. Bystrov VF, Arseniev AS, Barsukov IL, Lomize AL (1986): 2D NMR of single and double stranded helices of gramicidin A in micelles and solutions. Bull Magn Reson 8:84–94Google Scholar
  32. Clore GM, Gronenborn AM (1991): Two-, three-, and four-dimensional NMR methods for obtaining larger and more precise three-dimensional structures of proteins in solution. Ann Rev Biophys Biophys Chem 20:29–63CrossRefGoogle Scholar
  33. Creuzet F, McDermott A, Gebhard R, van der Hoef K, Spijker-Assink MB, Herzfeld J, Lugtenburg J, Levitt MH, Griffin RG (1991): Determination of membrane protein structure by rotational resonance NMR: bacteriorhodopsin. Science 251:783–786PubMedCrossRefGoogle Scholar
  34. Davies MA, Schuster HF, Brauner JW, Mendelsohn R (1990): Effects of cholesterol on conformational disorder in dipalmitoylphosphatidylcholine bilayers. A quantitative IR study of the depth dependence. Biochemistry 29:4368–4373PubMedCrossRefGoogle Scholar
  35. Davis JH (1983): The description of membrane lipid conformation, order and dynamics by 2H-NMR. Biochim Biophys Acta 737:117–171PubMedGoogle Scholar
  36. de Groot H, Smith SO, Courtin J, van den Berg E, Winkel C, Lugtenberg J, Griffin RG, Herzfeld J (1990): Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. Biochemistry 29:6873–6883PubMedCrossRefGoogle Scholar
  37. Deese AJ, Dratz EA, Brown MF (1981a): Retinal ROS lipids form bilayers in the presence and absence of rhodopsin: a 31P NMR study. FEBS Lett 124:93–99PubMedCrossRefGoogle Scholar
  38. Deese AJ, Dratz EA, Dahlquist FW, Paddy MR (1981b): Interaction of rhodopsin with two unsaturated phosphatidylcholines: a deuterium NMR study. Biochemistry 20:6420–6427PubMedCrossRefGoogle Scholar
  39. Deisenhofer J, Michel H (1989): The photosynthetic reaction center from the purple bacterium Rhodopseudomonas viridis. Science 245:1463–1473PubMedCrossRefGoogle Scholar
  40. Dill KA, Naghizadeh J, Marqusee JA (1988): Chain molecules at high densities at interfaces. Ann Rev Phys Chem 39:425–461CrossRefGoogle Scholar
  41. Dodd SW, Brown MF (1989): Disaturated phosphatidylcholines in the liquid-crystalline state studied by deuterium NMR spectroscopy. Biophys J 55:102aGoogle Scholar
  42. Ellena JF, Pates RD, Brown MF (1986): 31P NMR spectra of rod outer segment and sarcoplasmic reticulum membranes show no evidence of immobilized components due to lipid-protein interactions. Biochemistry 25:3742–3748PubMedCrossRefGoogle Scholar
  43. Epand RM (1990): Relationship of phospholipid hexagonal phases to biological phenomena. Biochem Cell Biol 68:17–23PubMedCrossRefGoogle Scholar
  44. Fong TM, McNamee MG (1987): Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26:3871–3880PubMedCrossRefGoogle Scholar
  45. Gaily HU, Seelig A, Seelig J (1976): Cholesterol-induced rod-like motion of fatty acyl chains in lipid bilayers. A deuterium magnetic resonance study. Hoppe-Seyler’s Z Physiol Chem 357:1447–1450Google Scholar
  46. Gibson NJ, Brown MF (1993): Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–2454PubMedCrossRefGoogle Scholar
  47. Gruner SM (1989): Stability of lyotropic phases with curved interfaces. J Phys Chem 93:7562–7570CrossRefGoogle Scholar
  48. Gullion T, Schaefer J (1989): Detection of weak heteronuclear dipolar coupling by rotational-echo double-resonance nuclear magnetic resonance. Adv Magn Reson 13:57–83Google Scholar
  49. Häberlen U (1976): High Resolution NMR in Solids. Selective Averaging. New York: Academic PressGoogle Scholar
  50. Hall JE, Vodyanoy I, Balasubramanian TM, Marshall GR (1984): Alamethicin: a rich model for channel behaviour. Biophys J 45:223–247CrossRefGoogle Scholar
  51. Halle B (1991): 2H NMR relaxation in phospholipid bilayers. Toward a consistent molecular interpretation. J Phys Chem 95:6724–6733CrossRefGoogle Scholar
  52. Hing AW, Adams SP, Silben DF, Norberg RE (1990): Deuterium NMR of Val1 ...(2–2H)Ala3...gramicidin A in oriented DMPC bilayers. Biochemistry 29:4144–4156PubMedCrossRefGoogle Scholar
  53. Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C (1994): An investigation of the ligand-binding site of the glutamine-binding protein of escherichia coli using rotational-echo double-resonance NMR. Biochemistry 33:8651–8661PubMedCrossRefGoogle Scholar
  54. Huang TH, Skarjune RP, Wittebort RJ, Griffin RG, Oldfield E (1980): Restricted rotational isomerization in polymethylene chains. J Am Chem Soc 102:7377–7379CrossRefGoogle Scholar
  55. Ipsen JH, Karlström G, Mouritsen OG, Wennerström HW, Zuckermann MJ (1987): Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 905:162–172PubMedCrossRefGoogle Scholar
  56. Israelachvili J (1992): Intermolecular and Surface Forces, 2nd Ed. New York: Academic PressGoogle Scholar
  57. Israelachvili JN, Wennerström H (1992): Entropic forces between amphiphilic surfaces in liquids. J Phys Chem 96:520–531CrossRefGoogle Scholar
  58. Jansson M, Thurmond RL, Barry JA, Brown MF (1992): Deuterium NMR study of intermolecular interactions in lamellar phases containing palmitoyllysophosphatidylcholine. J Phys Chem 96:9532–9544CrossRefGoogle Scholar
  59. Jeffrey KR, Wong TC, Burnell EE, Thompson MJ, Higgs TP, Chapman NR (1979): Molecular motion in the lyotropic liquid crystal system containing potassium palmitate: a study of proton spin-lattice relaxation times. J Magn Reson 36:151–171Google Scholar
  60. Jensen JW, Schutzbach JS (1984): Activation of mannosyltransferase II by nonbilayer phospholipids. Biochemistry 23:1115–1119CrossRefGoogle Scholar
  61. Kelusky EC, Smith ICP (1983): Characterization of the binding of the local anesthetics procaine and tetracaine to model membranes of phosphatidylethanolamine: a deuterium nuclear magnetic resonance study. Biochemistry 22:6011–6017PubMedCrossRefGoogle Scholar
  62. Ketchem RR, Hu W, Cross TA (1993): High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460PubMedCrossRefGoogle Scholar
  63. Kinnunen PKJ, Kõiv A, Lehtonen JYA, Rytömaa M, Mustonen P (1994): Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem Phys Lipids 73:181–207PubMedCrossRefGoogle Scholar
  64. Koeppe RE II, Killian JA, Greathouse DV (1994): Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J 66:14–24PubMedCrossRefGoogle Scholar
  65. König S, Pfeiffer W, Bayerl T, Richter D, Sackmann E (1992): Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. J Phys II 2:1589–1615CrossRefGoogle Scholar
  66. Kroon PA, Kainosho M, Chan SI (1976): Proton magnetic resonance studies of lipid bilayer membranes. Experimental determination of inter- and intramolecular nuclear relaxation rates in sonicated phosphatidylcholine bilayer vesicles. Biochim Biophys Acta 433:282–293CrossRefGoogle Scholar
  67. Lafleur M, Cullis P, Fine B, Bloom M (1990): Comparison of the orientational order of lipid chains in the L α and HII phases. Biochemistry 29:8325–8333PubMedCrossRefGoogle Scholar
  68. Lindblom G, Orädd G (1994): NMR studies of translational diffusion in lyotropic liquid crystals and lipid membranes. Prog NMR Spectrosc 26:483–515CrossRefGoogle Scholar
  69. Lindblom G, Rilfors L (1989): Cubic phases and isotropic structures formed by membrane lipids—possible biological relevance. Biochim Biophys Acta 988:221–256Google Scholar
  70. Lipari G, Szabo A (1982): Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. I. Theory and range of validity. J Am Chem Soc 104:4546–4559CrossRefGoogle Scholar
  71. Lundbæk JA, Andersen OS (1994): Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J Gen Physiol 104:645–673PubMedCrossRefGoogle Scholar
  72. Marqusee JA, Warner M, Dill KA (1984): Frequency dependence of NMR spin lattice relaxation in bilayer membranes. J Chem Phys 81:6404–6405CrossRefGoogle Scholar
  73. McConnell HM (1976): Molecular motion in biological membranes. In: Spin Labeling Theory and Applications, Berliner LJ, ed. New York: Academic PressGoogle Scholar
  74. McDermott AE, Creuzet F, Gebhard R, van der Hoef K, Levitt MH, Herzfeld J, Lugtenberg J, Griffin RG (1994): Determination of internuclear distances and the orientation of functional groups by solid-state NMR: rotational resonance study of the conformation of retinal in bacteriorhodopsin. Biochemistry 33:6129–6136PubMedCrossRefGoogle Scholar
  75. Mcintosh TJ, Simon SA (1986): Area per molecule and distribution of water iri fully hydrated dilauroylphosphatidylethanolamine bilayers. Biochemistry 25:4948–4952PubMedCrossRefGoogle Scholar
  76. McLaughlin S (1989): The electrostatic properties of membranes. Ann Rev Biophys Bio-phys Chem 18:113–136CrossRefGoogle Scholar
  77. Michelangeli F, Grimes EA, East JM, Lee AG (1991): Effects of phospholipids on the function of (Ca2+-Mg2+)-ATPase. Biochemistry 30:342–351PubMedCrossRefGoogle Scholar
  78. Morrison C, Bloom M (1994): Orientation dependence of 2H nuclear magnetic resonance spin-lattice relaxation in phospholipid and phospholipidxholesterol systems. J Chem Phys 101:749–763CrossRefGoogle Scholar
  79. Nagle JF (1993): Area/lipid of bilayers from NMR. Biophys J 64:1476–1481PubMedCrossRefGoogle Scholar
  80. Nagle JF, Wiener MC (1988): Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta 942:1–10PubMedCrossRefGoogle Scholar
  81. Navarro J, Toivio-Kinnucan M, Racker E (1984): Effect of lipid composition on the calcium/adenosine 5’-triphosphate coupling ratio of the Ca2+-ATPase of sarcoplasmic reticulum. Biochemistry 23:130–135PubMedCrossRefGoogle Scholar
  82. Newton AC (1993): Interactions of proteins with lipid headgroups: lessons from protein kinase C. Ann Rev Biophys Biomol Struct 22:1–25CrossRefGoogle Scholar
  83. Nordio PL, Segre U (1979): Rotational dynamics. In: The Molecular Physics of Liquid Crystals, Luckhurst GR, Gray GW, eds. New York: Academic PressGoogle Scholar
  84. Olsson U, Wennerström H (1994): Globular and bicontinuous phases of nonionic surfactant films. Adv Coll Interf Sci 49:113–146CrossRefGoogle Scholar
  85. Pastor RW, Venable RM, Karplus M (1991): Model for the structure of the lipid bilayer. Proc Natl Acad Sci USA 88:892–896PubMedCrossRefGoogle Scholar
  86. Pastor RW, Venable RM, Karplus M (1988): Brownian dynamics simulation of a lipid chain in a membrane bilayer. J Chem Phys 89:1112–1127CrossRefGoogle Scholar
  87. Pearlman JD, Zajicek J, Merickel MB, Carman CS, Ayers CR, Brookeman JR, Brown MF (1988): High-resolution 1H NMR spectral signature from human atheroma. Magn Reson Med 7:262–279PubMedCrossRefGoogle Scholar
  88. Peters GH, Toxvaerd S, Larsen NB, Bjørnholm T, Schaumburg K, Kjaer K (1995): Structure and dynamics of lipid monolayers: implications for enzyme catalysed lipolysis. Struct Biol 2:395–401CrossRefGoogle Scholar
  89. Petersen NO, Chan SI (1977): More on the motional state of lipid bilayer membranes: interpretation of order parameters obtained from nuclear magnetic resonance experiments. Biochemistry 16:2657–2667PubMedCrossRefGoogle Scholar
  90. Pfeiffer W, König S, Legrand JF, Bayerl T, Richter D, Sackmann E (1993): Neutron spin echo study of membrane undulations in lipid multibilayers. Europhys Lett 23: 457–462CrossRefGoogle Scholar
  91. Prosser RS, Daleman SI, Davis JH (1994): The structure of an integral membrane peptide: a deuterium NMR study of gramicidin. Biophys J 66:1415–1428PubMedCrossRefGoogle Scholar
  92. Rajamoorthi K, Brown MF (1991): Bilayers of arachidonic acid containing phospholipids studied by 2H and 31P NMR spectroscopy. Biochemistry 30:4204–4212PubMedCrossRefGoogle Scholar
  93. Recktenwald DJ, McConnell HM (1981): Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry 20:4505–4510PubMedCrossRefGoogle Scholar
  94. Rommel E, Noack F, Meier P, Kothe G (1988): Proton spin relaxation dispersion studies of phospholipid membranes. J Phys Chem 92:2981–2987CrossRefGoogle Scholar
  95. Rose ME (1957): Elementary Theory of Angular Momentum. New York: WileyGoogle Scholar
  96. Rotenberg M, Bivins R, Metropolis N, Wooten JK Jr (1959): The 3-j and 6-j Symbols. Cambridge, MA: The Technology Press of the Massachusetts Institute of TechnologyGoogle Scholar
  97. Roth M, Lewit-Bentley A, Michel H, Deisenhofer J, Huber R, Oesterhelt D (1989): Detergent structure in crystals of bacterial photosynthetic reaction centre. Nature 340:659–662CrossRefGoogle Scholar
  98. Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF (1987): Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J Am Chem Soc 109:2600–2609CrossRefGoogle Scholar
  99. Saupe A (1964): Kernresonanzen in kristallinen Flüssigheiten und kristallin-flüssigen Lösungen. Z Naturforsch A 19:161–171Google Scholar
  100. Schindler H, Seelig J (1975): Deuterium order parameters in relation to thermodynamic properties of a phospholipid bilayer. A statistical mechanical interpretation. Biochemistry 14:2283–2287PubMedCrossRefGoogle Scholar
  101. Scott HL (1986): Monte Carlo calculations of order parameter, profiles in models of lipid-protein interactions in bilayers. Biochemistry 25:6122–6126PubMedCrossRefGoogle Scholar
  102. Scott HL, Kalaskar S (1989): Lipid chains and cholesterol in model membranes: a Monte Carlo study. Biochemistry 28:3687–3691PubMedCrossRefGoogle Scholar
  103. Seddon JM (1990): Structure of the inverted hexagonal (HII ) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031:1–69PubMedGoogle Scholar
  104. Seelig J (1977): Deuterium magnetic resonance: theory and application to lipid membranes. Quart Rev Biophys 10:353–418CrossRefGoogle Scholar
  105. Seelig J, Seelig A (1980): Lipid conformation in model membranes and biological membranes. Quart Rev Biophys 13:19–61CrossRefGoogle Scholar
  106. Seelig J, Macdonald PM, Scherer PG (1987): Phospholipid headgroups as sensors of electric charge in membranes. Biochemistry 26:7535–7541PubMedCrossRefGoogle Scholar
  107. Sefcik MD, Schaefer J, Stejskal EO, McKay RA, Ellena JF, Dodd SW, Brown MF (1983): Lipid bilayer dynamics and rhodopsin-lipid interactions: new approach using high-resolution solid-state 13C NMR. Biochem Biophys Res Commun 114:1048–1055PubMedCrossRefGoogle Scholar
  108. Separovic F, Gehrmann J, Milne T, Cornell BA, Lin SY, Smith R (1994): Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues. Biophys J 67:1495–1500PubMedCrossRefGoogle Scholar
  109. Shinitzky M, Barenholz Y (1978): Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394PubMedGoogle Scholar
  110. Siegel DP, Green WJ, Talmon Y (1994): The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys J 66:402–414PubMedCrossRefGoogle Scholar
  111. Siminovitch DJ, Ruocco MJ, Olejniczak ET, Das Gupta SK, Griffin RG (1988a): Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phos-pholipid-cholesterol bilayer membranes. Biophys J 54:373–381PubMedCrossRefGoogle Scholar
  112. Siminovitch DJ, Wong FIT, Berchtold R, Mantsch HH (1988b): A comparison of the effect of one and two mono-unsaturated acyl chains on the structure of phospholipid bilayers: a high pressure infrared spectroscopic study. Chem Phys Lipids 46:79–87CrossRefGoogle Scholar
  113. Slichter CP (1990): Principles of Magnetic Resonance, 3rd Ed. Heidelberg: Springer-VerlagGoogle Scholar
  114. Smith R, Thomas DE, Separovic F, Atkins AR, Cornell BA (1989): Determination of the structure of a membrane-incorporated ion channel. Solid-state nuclear magnetic resonance studies of gramicidin A. Biophys J 56:307–314PubMedCrossRefGoogle Scholar
  115. Smith SO, Griffin RG (1988): High resolution solid-state NMR of proteins. Ann Rev Phys Chem 39:511–535CrossRefGoogle Scholar
  116. Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenberg J (1991): 13C Magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin. Biochemistry 30:7409–7415PubMedCrossRefGoogle Scholar
  117. Smith SO, Hamilton J, Salmon A, Bormann BJ (1994a): Rotational resonance NMR determination of intra- and intermolecular distance constraints in dipalmitoylphos-phatidylcholine bilayers. Biochemistry 33:6327–6333PubMedCrossRefGoogle Scholar
  118. Smith SO, Jonas R, Braiman M, Bormann BJ (1994b): Structure and orientation of the transmembrane domain of glycophorin in lipid bilayers. Biochemistry 33:6334–6341PubMedCrossRefGoogle Scholar
  119. Smith SO, Palings I, Miley ME, Courtin J, de Groot H, Lugtenberg J, Mathies RA, Griffin RG (1990): Solid-state NMR Studies of the mechanism of the opsin shift in the visual pigment rhodopsin. Biochemistry 29:8158–8164PubMedCrossRefGoogle Scholar
  120. Smith SO, Palings I, Copié V, Raleigh DP, Courtin J, Pardoen JA, Lugtenberg J, Mathies RA, Griffin RG (1987): Low-temperature solid-state 13C studies of the retinal chro-mohore in rhodopsin. Biochemistry 26:1606–1611PubMedCrossRefGoogle Scholar
  121. Söderman O (1986): The interaction constants in 13C and 2H nuclear magnetic resonance relaxation studies. J Magn Reson 68:296–302Google Scholar
  122. Stohrer J, Gröbner G, Reimer D, Weisz K, Mayer C, Kothe G (1991): Collective lipid motions in bilayer membranes studied by transverse deuteron spin relaxation. J Chem Phys 95:672–678CrossRefGoogle Scholar
  123. Szabo A (1984): Theory of fluorescence depolarization in macromolecules and membranes. J Chem Phys 81:150–167CrossRefGoogle Scholar
  124. Tanford C (1980): The Hydrophobic Effect, 2nd Ed. New York: John WileyGoogle Scholar
  125. Thurmond RL, Dodd SW, Brown MF (1991): Molecular areas of phospholipids as determined by 2H NMR spectroscopy: comparison of phosphatidylethanolamines and phosphatidylcholines. Biophys J 59:108–113PubMedCrossRefGoogle Scholar
  126. Thurmond RL, Lindblom G, Brown MF (1993): Curvature, order, and dynamics of lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochemistry 32:5394–5410PubMedCrossRefGoogle Scholar
  127. Thurmond RL, Lindblom G, Brown MF (1990): Influences of membrane curvature in lipid hexagonal phases studied by deuterium NMR spectroscopy. Biochem Biophys Res Commun 173:1231–1238PubMedCrossRefGoogle Scholar
  128. Thurmond RL, Otten D, Brown MF, Beyer K (1994): Structure and packing -of phosphatidylcholines in lamellar and hexagonal liquid-crystalline mixtures with a nonionic detergent: a wide-line deuterium and phosphorus-31 NMR study. J Phys Chem 98:972–983CrossRefGoogle Scholar
  129. Torchia DA, Szabo A (1982): Spin-lattice relaxation in solids. J Magn Reson 49:107–121Google Scholar
  130. Trouard TP, Alam TM, Brown MF (1994): Angular dependence of deuterium spin-lattice relaxation rates of macroscopically oriented dilaurylphosphatidylcholine in the liquid-crystalline state. J Chem Phys 101:5229–5261CrossRefGoogle Scholar
  131. Trouard TP, Alam TM, Zajicek J, Brown MF (1992): Angular anisotropy of 2H NMR spectral densities in phospholipid bilayers containing cholesterol. Chem Phys Lett 189:67–75CrossRefGoogle Scholar
  132. Ulrich AS, Heyn MP, Watts A (1992): Structure determination of the cyclohexene ring of retinal in bacteriorhodopsin by solid-state deuterium NMR. Biochemistry 31:10390–10399PubMedCrossRefGoogle Scholar
  133. Ulrich AS, Wallat I, Heyn MP, Watts A (1995): Re-orientation of retinal in the M-photointermediate of bacteriorhodopsin. Struct Biol 2:190–192CrossRefGoogle Scholar
  134. Ulrich AS, Watts A, Wallat I, Heyn MP (1994): Distorted structure of the retinal chro-mophore in bacteriorhodopsin resolved by 2H-NMR. Biochemistry 33:5370–5375PubMedCrossRefGoogle Scholar
  135. van der Ploeg P, Berendsen HJC (1982): Molecular dynamics simulation of a bilayer membrane. J Chem Phys 76:3271–3276CrossRefGoogle Scholar
  136. Venable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262:223–226PubMedCrossRefGoogle Scholar
  137. Vist MR, Davis JH (1990): Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry 29:451–464PubMedCrossRefGoogle Scholar
  138. Vold RR, Void RL (1991): Deuterium relaxation in molecular solids. Adv Magn Opt Reson 16:85–171Google Scholar
  139. Wennerström H, Lindman B, Söderman O, Drakenberg T, Rosenholm JB (1979): 13C magnetic relaxation in micellar solutions. Influences of aggregate motion on Ti. J Am ChemSoc 101:6860–6864CrossRefGoogle Scholar
  140. Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF (1988): Lipid-protein interactions mediate photochemical function of rhodopsin. Biochemistry 21:6469–6474CrossRefGoogle Scholar
  141. Wiener MC, White SH (1992): Structure of a fluid dioleoylphosphatidycholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys J 61:434–447PubMedCrossRefGoogle Scholar
  142. Williams GD, Beach JM, Dodd SW, Brown MF (1985): Dependence of deuterium spin-lattice relaxation rates of multilamellar phospholipid dispersions on orientational order. J Am Chem Soc 107:6868–6873CrossRefGoogle Scholar
  143. Wittebort RJ, Olejniczak ET, Griffin RG (1987): Analysis of deuterium magnetic resonance line shapes in anisotropic media. J Chem Phys 86:5411–5420CrossRefGoogle Scholar
  144. Wüthrich K (1989): Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243:45–50PubMedCrossRefGoogle Scholar
  145. Yeagle PL, Kelsey D (1989): Phosphorus NMR studies of lipid-protein interactions: human erythrocyte glycophorin and phospholipids. Biochemistry 28:2210–2215PubMedCrossRefGoogle Scholar
  146. Zaccai G, Büldt G, Seelig A, Seelig J (1979): Neutron diffraction studies on phosphatidylcholine model membranes. II. Chain conformation and segmental disorder. J Mol Biol 134:693–706PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • Michael F. Brown

There are no affiliations available

Personalised recommendations