Strategic Issues in Molecular Dynamics Simulations of Membranes

  • Eric Jakobsson
  • Shankar Subramaniam
  • H. Larry Scott


The heterogeneity associated with membrane systems poses a huge challenge for computer simulations of membrane dynamics and structure. Unlike proteins or nucleic acids with well-defined three-dimensional structures, membrane components such as lipid bilayers derive a vast majority of their properties and function from their fluid nature. This introduces the problem of setting up the correct bilayer model system for any realistic computer simulation. The model includes: choice of the system size; interatomic force fields; treatment of short and long-range interactions; and, most important, the macroscopic boundary conditions that best mimic experimental conditions. The simulation is thus an integral part of the model.


Molecular Dynamics Simulation Lipid Bilayer Membrane Strategic Issue Dipole Potential Fast Multipole Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht O, Gruler H, Sackman E (1978): Polymorphism of phospholipid bilayers. J Physique 39:301–313CrossRefGoogle Scholar
  2. Alper HE, Bassolino D, Stouch TR (1993a): Computer simulation of a phospholipid monolayer-water system. The influence of long range forces on water structure and dynamics. J Chem Phys 98:9798–9807CrossRefGoogle Scholar
  3. Alper HE, Bassolino-Klimas D, Stouch TR (1993b): The limiting behavior of water hydrating a phospholipid monolayer: A computer simulation study. J Chem Phys 99:5547–5559CrossRefGoogle Scholar
  4. Bakker G (1911): Theorie de la Couche Capillaire Plane dans les Corps Purs. Paris: Gauthier-VillarsGoogle Scholar
  5. Berendsen HJC, Egberts B, Marrink S-J, Ahlstrom P (1992): Molecular dynamics simulations of phospholipid membranes and their interaction with phospholipase A2. In: Membrane Proteins: Structures, Interactions and Models, Pullman A, Jortner J, Pullman B, eds. Dordrecht, The Netherlands: Kluwer Academic PublishersGoogle Scholar
  6. Berendsen HJC, Grigera JR, Straatsma TP (1987): The missing term in effective pair potentials. J Chem Phys 91:6289–6291Google Scholar
  7. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984): Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3689CrossRefGoogle Scholar
  8. Board JA Jr, Causey JW, Leathrum JR Jr, Windemuth A, Schulten K (1992): Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chem Phys Lett 198:89CrossRefGoogle Scholar
  9. Chiu SW, Gulukota K, Jakobsson E (1992): Computational approaches to understanding the ion channel-lipid system. In: Membrane Proteins: Structures, Interactions, and Models, Pullman A, Jortner J, Pullman B, eds. Dordrecht, The Netherlands: Kluwer Academic PublishersGoogle Scholar
  10. Chiu SW, Clark M, Balajiv V, Subramaniam S, Scott HL, Jakobsson E (1995): Incorporation of surface tension into molecular dynamics simulation of an interface: A fluid phase lipid bilayer membrane. Biophys J 69:1230–1245PubMedCrossRefGoogle Scholar
  11. Damodaran KV, Merz KM (1994): A comparison of DMPC- and DLPE-based lipid bilayers. Biophys J 66:1076–1087PubMedCrossRefGoogle Scholar
  12. Darden T, York D, Pedersen L (1993): Particle mesh Ewald: An N · · log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  13. Egberts E (1988): Molecular dynamics simulations of multibilayer membranes (dissertation). University of Groningen, Groningen, The NetherlandsGoogle Scholar
  14. Egberts E, Marrink S J, Berendsen HJC (1994): Molecular dynamics simulation of a phospholipid membrane. Eur Biophys J 22:423–436PubMedCrossRefGoogle Scholar
  15. Flewelling RF, Hubbell WL (1986): The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys 7 49:541–552CrossRefGoogle Scholar
  16. Helfrich P, Jakobsson E (1990): Calculation of deformation energies and conformations in lipid membranes containing gramicidin channels. Biophys J 57:1075–1084PubMedCrossRefGoogle Scholar
  17. Heller H, Schaefer M, Schulten K (1993): Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid-crystal phases. J Phys Chem 97:8343–8360CrossRefGoogle Scholar
  18. Hladky SB, Haydon DA (1973): Membrane conductance and surface potential. Biochim Biophys Acta 318:464–468CrossRefGoogle Scholar
  19. Huang P, Perez JJ, Loew GH (1994): Molecular dynamics simulations of phospholipid bilayers. J Biomol Struct Dyn 11:927–956PubMedCrossRefGoogle Scholar
  20. Lee CY, McCammon JA, Rossky PJ (1984): The structure of liquid water at an extended hydrophobic surface. J Chem Phys 80:4448CrossRefGoogle Scholar
  21. MacDonald RC, Simon SA (1987): Lipid monolayer states and their relation to bilayers. Proc Natl Acad Sci USA 84:4089–4093PubMedCrossRefGoogle Scholar
  22. Marrink SJ, Berendsen HJC (1994): Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168CrossRefGoogle Scholar
  23. Marrink SJ, Berkowitz M, Berendsen HJC (1993): Molecular dynamics simulation of a membrane water interface—the ordering of water and its relation to the hydration force. Langmuir 9:3122–3131CrossRefGoogle Scholar
  24. McLaughlin S (1989): The electrostatic properties of membranes. Ann Rev Biophys Biophys Chem 18:113–136CrossRefGoogle Scholar
  25. McLaughlin S (1977): Electrostatic potentials at membrane-solution interfaces. Curr Top Membr Transp 9:71–144CrossRefGoogle Scholar
  26. Robinson AJ, Richards WG, Thomas PJ, Hann MM (1994): Head group and chain behavior in biological membranes: A molecular dynamics computer simulation. Biophys J 67:2345–2354PubMedCrossRefGoogle Scholar
  27. Ryckaert JP, Bellemans A (1978): Molecular dynamics of liquid alkanes. Far Disc Chem Soc 66:95–106CrossRefGoogle Scholar
  28. Ryckaert JP, Bellemans A (1975): Molecular dynamics of liquid n-butane near its boiling point. Chem Phys Lett 30:123–125CrossRefGoogle Scholar
  29. Vehable RM, Zhang Y, Hardy BJ, Pastor RW (1993): Molecular dynamics simulations of a lipid bilayer and of hexadecane: An investigation of membrane fluidity. Science 262:223–226CrossRefGoogle Scholar
  30. von Heijne G (1994): Membrane proteins: From sequence to structure. Annu Rev Biophys Biomol Struct 23:167–192CrossRefGoogle Scholar
  31. White SH (1980): Small phospholipid vesicles: Internal pressure, surface tension, and surface free energy. Proc Natl Acad Sci USA 77:4048–4050PubMedCrossRefGoogle Scholar
  32. Zhou F, Schulten K (1995): Molecular dynamics study of a membrane-water interface. J Phys Chem 99:2194–2208CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1996

Authors and Affiliations

  • Eric Jakobsson
  • Shankar Subramaniam
  • H. Larry Scott

There are no affiliations available

Personalised recommendations