Subfractional Analysis of Thylakoid Membrane Organization and Adaptation

  • Bertil Andersson
  • Ulla K. Larsson
  • Cecilia Sundby
  • Pirkko Mäenpää
  • Sophie Bingsmark
  • Torill Hundal
Part of the NATO ASI Series book series (NSSA, volume 168)


In Dutch the word for chemistry is scheikunde. This is one illustration of the central role for the separation concept in experimental chemistry. The need for efficient fractionation methods does also apply to biochemistry and photo-synthetic research. Not until pure and intact chloroplasts were isolated in the fifties could the subcellular localization of CO2 fixation be established1. Thylakoid preparations completely free of contaminating mitochondria were a prerequisite for proving the existence of photophosphorylation1. Today we see the importance of subfractionation for the isolation of thylakoid protein complexes with a defined function and composition2. For the recent dramatic progress in our understanding of photosystem II, subfractionation has been a real cornerstone. In this paper we describe the sub-fractional approach for studies on the organization and dynamics of the thylakoid membrane.


Thylakoid Membrane Antenna Size Spinach Thylakoid Stroma Thylakoid Thylakoid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. I. Arnon, The Light Reactions of Photosynthesis, Proc. Nat. Acad. sci. 68:2883 (1984).CrossRefGoogle Scholar
  2. 2.
    B. Andersson and J. M. Anderson, The Chloroplast Thylakoid Membrane — Isolation, Subfractionation and Purification of Its Supramolecular Complexes, in: “Modern Methods of Plant Analysis”, H. F. Linskens and J. F. Jackson, eds., Springer-Verlag, Berlin (1985).Google Scholar
  3. 3. P.-Å. Albertsson, “Partition of Cell Particles and Macromolecules (3rd Ed.) Wiley & Sons, New York (1985).Google Scholar
  4. 4.
    P.-Å. Albertsson, B. Andersson, C. Larsson and H.-E. Åkerlund, Phase partition — A method for purification and analyses of cells, organelles and membrane vesicles, in: “Methods in Biochemical Analysis”, D. Glick, ed., Wiley & Sons, New York (1982).Google Scholar
  5. 5.
    C. Larsson, Partition in aqueous polymer two-phase system: A rapid method for separation of membrane particles according to their surface properties, in: “Isolation of membranes and organelles from plant cells”, J. L. Hall and A. L. Moore, eds. Academic Press, London (1983).Google Scholar
  6. 6.
    B. Andersson, Characterization of the thylakoid mem-brane by subfractionation analyses, in: “Methods of Enzymology — Plant molecular biology”, A. Weisbach and H. Weisbach eds., Academic Press, New York (1986).Google Scholar
  7. 7.
    B. Andersson, C. Sundby, H.-E. Åkerlund and P.-Å. Albertsson, Inside-out thylakoid vesicles — Important tools for the characterization of the photosynthetic membrane. Physiol. Plant. 65:322 (1985).CrossRefGoogle Scholar
  8. 8.
    B. Andersson and J. M. Anderson, Lateral heterogeneity in the distribution of chlorophyllprotein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593:427 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    J. M. Anderson and B. Andersson, The dynamic photo-synthetic membrane and regulation of solar energy conversion, Trends Biochem. Sci. 13:351 (1988).PubMedCrossRefGoogle Scholar
  10. 10.
    O. Vallon, F. A. Wollman and J. Olive, Laterial distribution of the main protein complexes of the photosynthetic apparatus in Chlamydomonas rein-hardtii and in spinach: an immunocytochemical study using intact thylakoid membranes and a PS II enriched membrane preparation, Photobiochem. Photobiophys. 12:203 (1986).Google Scholar
  11. 11.
    J. Barber, Influence of surface changes on thylakoid structure and function, Annu. Rev. Plant Physiol. 33:261 (1982).CrossRefGoogle Scholar
  12. 12.
    L. A. Staehelin and C. J. Arntzen, Regulation of Chloroplast Membrane Function: Protein Phosphorylation Changes the Spatial Organization of Membrane Components, J. Cell. Biol. 97:1327 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Bennet, Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein, Biochem. J. 212:1 (1983).Google Scholar
  14. 14.
    U. K. Larsson, C. Sundby and B. Andersson, Characterization of two different subpopulations of spinach LHC II: polypeptide composition, phosphorylation pattern and association with photosystem II. Biochim. Biophys. Acta, 894:58 (1987).Google Scholar
  15. 15.
    P. Horton, P. Lee, Stimulation of a cyclic electron transfer pathway around photosystem II by phosphorylation of chloroplast thylakoid proteins. FEBS Lett. 162:81 (1983).CrossRefGoogle Scholar
  16. 16.
    U. K. Larsson, Modulation in the organization of the light-harvesting antenna of photosystem II — a molecular mechanism for light adaptation in plants. Doctoral Thesis, University of Lund (1987).Google Scholar
  17. 17.
    U. K. Larsson, E. Ögren, G. Öquist and B. Andersson Electron transport and fluorescence studies on the interaction between phospho-LHC and photosystem I in isolated stroma lamellae vesicles. Photobiochem. Photobiophys. 13:29 (1986).Google Scholar
  18. 18.
    C. Sundby and B. Andersson, Temperature-induced reversible migration along the thylakoid membrane of photosystem II regulates its association with LHC-II. FEBS Lett. 191:24 (1985).CrossRefGoogle Scholar
  19. 19.
    K. Gounaris, A. P. R. Brain, P. J. Quinn and W. P. Williams, Structural Reorganization of chloroplast thylakoid membranes in response to heat-stress. Biochim. Biophys. Acta 766:198 (1984).CrossRefGoogle Scholar
  20. 20.
    A. K. Mattoo, and M. Edelman, Intramembrane translocation and posttranslational palmitoylation of the chloroplast 32 kDa herbicide-binding protein. Proc. Natl. Acad. Sci. 84:1497 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    D. J. Kyle, I. Ohad, and C. J. Arntzen, Membrane protein damage and repair: Selective loss of a qui-none-protein function in chloroplast membranes, Proc. Natl. Acad. Sci. 81:4070 (1984).PubMedCrossRefGoogle Scholar
  22. 22.
    I. Virgin, S. Styring and B. Andersson, Photosystem II disorganization and manganese release after photoinhibition of isolated spinach thylakoid membranes, FEBS Lett. 233:408 (1988).CrossRefGoogle Scholar
  23. 23.
    I. Virgin, T. Hundal, S. Styring and B. Andersson, Disassembly of photosystem II following photoinhibition, this volume.Google Scholar
  24. 24.
    B. M. Greenberg, V. Gaba, A. K. Mattoo and M. Edelman, Identification of a primary in vivo degradation product of the rapidly-turning-over 32 kDa protein of photosystem II, EMBO J. 6:2865 (1987).PubMedGoogle Scholar
  25. 25.
    U. K. Larsson, J. M. Anderson and B. Andersson, Changes in the relative amount of the peripheral antenna pool of LHC II in response to light variations and thylakoid development. Biochim. Biophys. Acta 894:69 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Bertil Andersson
    • 1
  • Ulla K. Larsson
    • 2
  • Cecilia Sundby
    • 2
  • Pirkko Mäenpää
    • 1
  • Sophie Bingsmark
    • 1
  • Torill Hundal
    • 1
  1. 1.Department of Biochemistry, Arrhenius LaboratoriesUniversity of StockholmSweden
  2. 2.Department of BiochemistryUniversity of LundSweden

Personalised recommendations