Advertisement

Inactivation of Photosystem II and Turnover of the D1-Protein by Light and Heat Stresses

  • Gadi Schuster
  • Susana Shochat
  • Noam Adir
  • Itzhak Ohad
Part of the NATO ASI Series book series (NSSA, volume 168)

Abstract

The photosynthetic electron flow activity is sensitive to physiological stress conditions such as light, heat, cold or water stress1,2. Interestingly, photosystem I (PS I) is not as sensitive as photosystem II (PS II), and in most cases, PS I continues to operate normally under conditions in which PS II activity is completely inhibited. As plants are exposed to stress conditions in their natural habitats, the questions arise as to what are the molecular mechanisms of the stress induced inactivation of PS II and whether there are physiological processes in the chloroplasts which may protect the photosynthetic electron flow activity of PS II from the specific damage induced by environmental stresses. Among these, the inactivation of PS II by light and heat stress have been extensively studied using the green alga Chlamydomonas reinhardtii.

Keywords

Heat Stress Specific Damage Heat Shock Condition Chlamydomonas Cell Photosynthetic Electron Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Powels, S., Ann. Rev. Plant Physiol 35:15–44 (1984).CrossRefGoogle Scholar
  2. 2.
    Kyle, D. J. and Ohad, I. in Encyclopedia of Plant Physiol. (New series), Vol. 19, Staehelin, L. A. and Arntzen, C. J., eds.), pp. 468–476. Springer, Heidelberg. (1986)Google Scholar
  3. 3.
    Kyle, D. J. in “Photoinhibition” Kyle, D. J. Osmond, C. B. and Arntzen, C J. eds. Elsevier sci. Pub. B. V. pp.197–226. (1987)Google Scholar
  4. 4.
    Ohad, I., Koike, H. K., Shochat, S. and Inoue, Y. Biochem. Biophys. Acta. 933, 288–298. (1988)CrossRefGoogle Scholar
  5. 5.
    Kyle, D. J. Photochem. Photobiol. 41, 107–116. (1985)CrossRefGoogle Scholar
  6. 6.
    Kyle, D. J., Ohad, I. and Arntzen, C. J. Proc. Natl. Acad. Sci. USA 81, 4070–4074. (1985)CrossRefGoogle Scholar
  7. 7.
    Ohad, I., Kyle, A. J. and Arntzen, C. J. J. Cell Biol. 35, 521–552. (1984)CrossRefGoogle Scholar
  8. 8.
    Schuster, G., Timberg, R., and Ohad, I., Eur. J. Biochem. (in press) (1988).Google Scholar
  9. 9.
    Schuster, G., Dewit, M., Staehelin, L. A. and Ohad, I. J. Cell Biol. 103, 71–80. (1986)PubMedCrossRefGoogle Scholar
  10. 10.
    Canaani, O., Schuster, G., and Ohad, I. Photosinthesis Res. (in press) (1988).Google Scholar
  11. 11.
    Greenberg, B. M., Gaba, V., Mattoo, A. K. and Edelman, M. EMBO J. 6, 2865–2869. (1987)PubMedGoogle Scholar
  12. 12.
    Trebst, A. and Draber, W., Photosynthesis Res. 10, 381–392. (1986).CrossRefGoogle Scholar
  13. 13.
    Schuster, G., Even, D., Kloppstech, K. and Ohad, I. EMBO J. 7. 1–6. (1988).PubMedGoogle Scholar
  14. 14.
    Dean, R. T. FEBS Lett. 220: 278–282 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    Wolff, S. P., Garner, A. and Dean, R. Trends. Biochem. Sci. 11: 27–30 (1986).CrossRefGoogle Scholar
  16. 16.
    Davis, K. J. A., J. Biol. Chem. 262:9895–9901 (1987).Google Scholar
  17. 17.
    Asada, K. and Takahashi, M., in “Photoinhibition” Kyle, D. J. Osmond, C. B. and Arntzen, C J. eds. Elsevier sci. Pub. B. V. pp.227–287. (1987).Google Scholar
  18. 18.
    Kloppstech, K., Meyer, G., Schuster, G. and Ohad, I. EMBO J. 4, 1901–1909. (1985).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Gadi Schuster
    • 1
  • Susana Shochat
    • 1
  • Noam Adir
    • 1
  • Itzhak Ohad
    • 1
  1. 1.Dept. of Biological ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations