Permeabilized Cyanobacteria: A Model System for Photosynthetic and Biotechnological Studies

  • George C. Papageorgiou
Part of the NATO ASI Series book series (NSSA, volume 168)

Abstract

The cyanobacteria (blue-green algae) is the largest group of phototrophs in the superkingdom Prokaryotae (Stanier and Cohen Bazire, 1977). Micropalaeontology places their origin in the middle of the Precambrian Eon, some 2.8–3.5 billion years ago, but it has not been able to decide yet whether filamentous or unicellular varieties appeared first (Schopf and Walter, 1982). Those archaeic cyanobacteria were the first photoautotrophs on our planet that were endowed with an oxygenic photosynthetic machine, and so they are credited with the enrichment of Earth’s atmosphere in oxygen.

Keywords

Permeability Chlorophyll Foam Polysaccharide Immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armond, P. A. and Staehelin, L. A., 1979, Lateral and vertical displacements of integral membrane proteins during lipid phase transition in Anacystis nidulans, Proceed. Natl. Acad. Sci. US., 76:1901.CrossRefGoogle Scholar
  2. Barber, J., 1980, Membrane surface charges and potentials in relation to photosynthesis, Biochim. Biophys. Acta, 594: 523.Google Scholar
  3. Barber, J., 1982, Influence of surface charges on thylakoid structure and function, Ann. Rev. Plant Physiol., 33:261.CrossRefGoogle Scholar
  4. Barbotin, J. N., Cocquempot, M. F., Larreta-Garde, V., Thomasset, B., Gellf, G., Clement-Metral, J. D., and Thomas, D., 1987, Meth. Enzymol., 135: 454.CrossRefGoogle Scholar
  5. Barbotin, J. N., and Thomasset, B., 1980, Immobilized organelles and whole cells into protein foam structures. Scanning and transmission electron microscopy observations, Biochimie, 62: 359.PubMedCrossRefGoogle Scholar
  6. Biggins, J., 1967a, Preparation of metabolically active protoplasts from the blue-green alga Phormidium luridum, Plant Physiol., 42: 1442.CrossRefGoogle Scholar
  7. Biggins, J., 1967b, Photosynthetic reactions by lysed protoplasts and particle preparations from the blue-green alga Phormidium luridum, Plant Physiol, 42: 1447.CrossRefGoogle Scholar
  8. Binder, A., Tel-Or, E. and Avron, M., 1976, Photosynthetic activities of membrane preparations of the blue-green alga Phormidium luridum, Eur. J. Biochem. 67: 187.PubMedCrossRefGoogle Scholar
  9. Brand, J. J., 1977, Spectral changes in Anacystis nidulans induced by chilling, Plant Physiol., 59: 970.PubMedCrossRefGoogle Scholar
  10. Braun, V., Rehn, K., and Wolff, H., 1970, Supramolecular structure of the rigid wall of Salmonella, Serratia, Proteus, and Pseudomonas fluorescens: number of lipoprotein molecules in a membrane layer, Biochemistry, 9: 5041.PubMedCrossRefGoogle Scholar
  11. Chou, Lil S., and Barber, J., 1980, Salt dependent changes of 9-aminoacri-dine fluorescence as a measure of charge densities of membrane surfaces. J. Biochem. Biophys. Methods, 3: 173.CrossRefGoogle Scholar
  12. Collins, K. D., and Washabaugh, M. W., 1985, The Hofmeister effect and the behavior of water ate interfaces, Quart. Rev. Biophysics, 18: 323.CrossRefGoogle Scholar
  13. Crespi, H. L., Mandeville, S. E., and Katz, J. J., 1962, The action of lysozyme on several blue-green algae, Biochem. Biophys. Res. Commun., 9: 569.PubMedCrossRefGoogle Scholar
  14. Drews, G., and Liieckesser, J., 1974, Function, structure and composition of cell walls and external layers, in: “The Biology of Cyanobacteria,” N. G. Carr and B. A. Whitton, eds., Blackwell, Oxford.Google Scholar
  15. Erokhina, L., Shubin, L., Klimov, V., and Proskuryakov, I., 1982, Reversible photoinduced changes of absorption and fluorescence yield of phycobilisomes related to the photoreduction of allophycocya-nin B, in: “Photosynthetic Prokaryotes,” G. C. Papageorgiou and L. Packer, eds., Elsevier, New York.Google Scholar
  16. Flewelling, R. F., and Hubbel, W. L., 1986, Hydrophobic ion interactions with membranes. Thermodynamic analysis of tetraphenylphosphonium binding to vesicles, Biophys. J., 49: 531.PubMedCrossRefGoogle Scholar
  17. Forrest, H. S., Van Baalen, C., and Myers, J., 1957, Occurence of pteridines in a blue-green alga, Science, 125: 699.PubMedCrossRefGoogle Scholar
  18. Fukui, S., and Tanaka, A., 1982, Immobilized microbial cells, Ann. Rev. Microbiol. 36: 145.CrossRefGoogle Scholar
  19. Furtado, D., Williams, W. P., Brain, A. P. R. and Quinn, P., 1979, Phase separation in membranes of Anacystis nidulans grown at different temperatures, Biochim. Biophys. Acta, 555: 352.PubMedCrossRefGoogle Scholar
  20. Gerhardt, B. and Trebst, A., 1965, Photosynthetische Reaktionen in lyophilisierten Zellen des Blaualge Anacystis, Zeit. Naturforsch., 20b: 879.Google Scholar
  21. Gilleland, H. E., Stinnet, J. D. Jr., Roth, I. L. and Eagon, R. G., 1973, Freeze-etch study of Pseudomonas aeruginosa: localization within the cell wall of an ethylene diamine tetracetate extractable compound. J. Bacteriol., 113: 417.PubMedGoogle Scholar
  22. Glazer, A. N., 1984, Phycobilisome: a macromolecular complex optimized for light energy transfer. Biochim. Biophys. Acta, 768: 29.Google Scholar
  23. Glazer, A. N., and Bryant, D. A., 1975, Allophycocyanin B (max 671, 618 nm). A new cyanobacterial phycobiliprotein. Arch. Microbiol., 104: 11.Google Scholar
  24. Hatefi, Y., and Hanstein, W. G., 1969, Solubilization of particulate proteins and nonelectrolytes by chaotropic agents, Proceed. Natl. Acad. Sci. U. S., 62: 1129.CrossRefGoogle Scholar
  25. Jansz, E. R., and Maclean, F. I., 1973, The effect of cold shock on the blue-green alga Anacystis nidulans, Can. J. Microbiol., 19: 381.PubMedCrossRefGoogle Scholar
  26. Kalosaka, K., 1987, Surface electric properties of photosynthetic membranes from cyanobacteria (cyanophytes), Ph. D. thesis, Univ. of Patras, Greece.Google Scholar
  27. Kalosaka, K. and Papageorgiou, G. C., 1984, Surface electric properties of thylakoid fragments isolated from vegetative and heterocystous cyanobacteria, in “Proceedings of the Vlth International Congress on Photosynthesis,” C. Sybesma, ed., Martinus Nijhoff/Dr W. Junk, The Hague.Google Scholar
  28. Kalosaka, K., Sotiropoulou, G. and Papageorgiou, G. C., 1985, Retardation of electron donation to photosystem I in aged cyanobacteria and its reversal by metal cations. Biochim. Biophys. Acta, 808: 273.CrossRefGoogle Scholar
  29. Lambert, G. R, and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria (blue-green algae), Biol. Rev., 56: 589.CrossRefGoogle Scholar
  30. McLaughlin, S., 1977, Electrostatic potentials at membrane solution interfaces, in “Current Topics in Membranes and Transport” Bronner, F., and Kleinzeller, A., eds., Academic Press, New York.Google Scholar
  31. Murata N., Troughton, J. H. and Fork, D. C., 1975, Relationships between the transition of the physical phase of membrane lipids and photosynthetic parameters in Anacystis nidulans, Plant Physiol., 56: 508.PubMedCrossRefGoogle Scholar
  32. Nichols, J. W., and Deamer, D. W., 1980, Net proton-hydroxyl permeability of large unilamellar liposomes measured by an acid-base titration technique, Proceed. Natl. Acad. Sci. US. 77: 2038.CrossRefGoogle Scholar
  33. Ono, T. A., and Murata, N., 1981a, Chilling susceptibility of the blue-green alga Anacystis nidulans: I. Effect of growth temperature. Plant Physiol., 67: 176.CrossRefGoogle Scholar
  34. Ono, T. A. and Murata, N., 1981b, Chilling susceptibility of the blue--green alga Anacystis nidulans. II. Stimulation of the passive permeability of the cytoplasmic membrane at chilling temperatures. Plant Physiol., 67: 182.CrossRefGoogle Scholar
  35. Ono, T. A. and Murata, N., 1981c, Chilling susceptibility of the blue--green alga Anacystis nidulans. III. Lipid phase of the cytoplasmic membrane, Plant Physiol., 69: 125.CrossRefGoogle Scholar
  36. Papageorgiou, G. C., 1977, Photosynthetic activity of diimidoester-modified cells, permeaplasts, and cell-free fragments of the blue--green alga Anacystis nidulans, Biochim. Biophys. Acta, 461: 379.PubMedCrossRefGoogle Scholar
  37. Papageorgiou, G. C., 1979, Molecular and functional aspects of immobilized chloroplast membranes, in “Photosynthesis in Relation to Model Systems”, Barber, J., ed., Elsevier, Amsterdam.Google Scholar
  38. Papageorgiou, G. C., 1980, Stabilization of chloroplast and subchloroplast particles, Meth. Enzymol., 69: 613.CrossRefGoogle Scholar
  39. Papageorgiou, G. C., 1987, Immobilized photosynthetic microorganisms. Photosynthetica, 21: 367.Google Scholar
  40. Papageorgiou, G. C., 1988a, Rapid permeabilization of Anacystis nidulans to electrolytes, Meth Enzymol, Vol 167 (in press).Google Scholar
  41. Papageorgiou, G. C., 1988b, Interactions of inorganic ions with oriented cyanobacterial thylakoids, in “water and Ions in Biological Systems,” P. Lauger, L. Packer, and V. Vasilescu, eds., Birkhauser Verlag, Basel.Google Scholar
  42. Papageorgiou, G. C., and Lagoyanni, T., 1983, Effects of chaotropic electrolytes on the structure and electronic excitation of glutarade-hyde and diimidoester-crosslinked phycobilisomes, Biochim. Biophys. Acta, 714: 323.Google Scholar
  43. Papageorgiou, G. C. and Lagoyanni, T., 1985, Photosynthetic properties of rapidly permeabilized cells of the cyanobacterium Anacystis nidulans. Biochim Biophys Acta, 807: 230.CrossRefGoogle Scholar
  44. Papageorgiou, G. C. and Lagoyanni, T., 1986, Immobilization of photosyn-thetically active cyanobacteria in glutaraldehyde-crosslinked albumin matrix, Appl. Microbiol. Biotechnol., 23: 417.CrossRefGoogle Scholar
  45. Papageorgiou, G. C., Kalosaka, K, Sotiropoulou, G., Barbotin, J. N., Thomasset, B., and Thomas, D., 1988, Entrapment of ion-permeable cyanobacteria (Anacystis nidulans) in calcium alginate, Appl. Microbiol. Biotechnol., in press.Google Scholar
  46. Papageorgiou, G. C. and Tzani, H., 1980, The action of lysozyme on gluta-raldehyde-treated cells of the cyanobacterium Phormidium luridum, J. Appl. Biochem., 2: 230.Google Scholar
  47. Philips, D. C., 1967, The hen egg-white lysozyme molecule. Proceed. Natl. Acad. Sci., 57: 484.Google Scholar
  48. Rao, K. K., and Hall, D. O., 1984, Photosynthetic production of fuels and chemicals in immobilized systems, Trends in Biochem. Sci. 2:1.Google Scholar
  49. Rao, V. S. K., Brand, J., and Myers, J., 1977, Cold-shock syndrome of Ana-cystis nidulans, Plant Physiol., 59: 965.PubMedCrossRefGoogle Scholar
  50. Robinson, S. J., DeRoo, C. S. and Yocum, C. F., 1982, Photosynthetic electron transfer in preparations of the cyanobacterium Spirulina platensis, Plant Physiol. 70, 154–161.PubMedCrossRefGoogle Scholar
  51. Schöpf, J. W. and Walter, M. R. (1982) Origin and early evolution of cyanobacteria: the geological evidence, in “The Biology of Cyanobacteria,” N. G. Carr and B. A. Whitton, eds., Blackwell, Oxford.Google Scholar
  52. Schreiber, U., 1979, Cold-induced uncoupling of energy transfer between phycobilins and chlorophyll in Anacystis nidulans. FEBS Letters, 107: 4.PubMedCrossRefGoogle Scholar
  53. Schreiber, U., Rijgersberg, C. P., and Amesz, J., 1979, Temperature-dependent reversible changes in phycobilisome-thylakoid attachment, FEBS Letters, 104: 327CrossRefGoogle Scholar
  54. Sotiropoulou, G., 1987, Interactions of Ions with Oriented Cyanobacterial Thylakoids, Ph. D. thesis, University of Thessaloniki, Greece.Google Scholar
  55. Sotiropoulou, G., Lagoyanni, T., and Papageorgiou, G. C. (1984) Effects of Ca ions on light-induced electron transport activities of Anacystis nidulans permeaplasts and spheroplasts, in “Proceedings of the VIth International Congress on Photosynthesis,” C. Sybesma, ed., Martinus Nijhoff/Dr W. Junk, The Hague.Google Scholar
  56. Sotiropoulou, G., and Papageorgiou, G. C., 1985, Modulation of the Hill reaction rates by ions iteracting with the outer surface of cyanobacterial thylakoids, in “Ion Interactions in Energy Transfer Biomembranes”, Papageorgiou, G. C., Barber, J., and Papa, S, eds., Plenum Press, New York.Google Scholar
  57. Sotiropoulou, G. and Papageorgiou, G. C., 1986, Stimulation and inhibition of photosystem II electron transport in cyanobacteria by ions interacting with the cytoplasmic face of thylakoids. Photosynt. Res., 10: 445.CrossRefGoogle Scholar
  58. Spiller, H., and Boeger, P., 1980, Photosynthetically active algal preparations, Meth. Enzymol. 69: 105.CrossRefGoogle Scholar
  59. Stanier, G. (1982) Foreword, in “The Biology of Cyanobacteria,” Carr, N. G., and Whitton, B. A., eds., Blackwell, Oxford.Google Scholar
  60. Stanier, G., and Cohen-Bazire, G., 1977, Phototrophic prokaryotes: the cyanobacteria, Ann. Rev. Microbiol., 31: 225.CrossRefGoogle Scholar
  61. Ward, B. and Myers, J., 1972, Properties of permeaplasts of Anacystis, Plant Physiol., 50: 547.PubMedCrossRefGoogle Scholar
  62. Williams, W. P., and Allen, J. F., 1987, State 1/State 2 changes in higher plants and algae, Photosynth. Res., 13: 19.CrossRefGoogle Scholar
  63. Witholt, B., Heerikhuizen, van H., and De Leij, L., 1976, How lysozyme penetrates through the bacterial outer membrane, Biochim. Biophys. Acta, 443: 534.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • George C. Papageorgiou
    • 1
  1. 1.National Reseach Center DemokritosInstitute of BiologyAthensGreece

Personalised recommendations