The Use of Transgenic Plants to Manipulate Photosynthetic Processes

  • Tristan A. Dyer
Part of the NATO ASI Series book series (NSSA, volume 168)


The techniques of molecular biology have undoubtedly given us great insight into the structure of the proteins involved in photosynthetic processes. The main reason is that it is far easier to first isolate and sequence the gene for a particular protein (and from this derive its amino acid sequence) than it is to directly sequence the protein itself. Nearly all the sequences for proteins known to be involved in photosynthesis have been derived in this way. Now that we are armed with all this information about the structure of these proteins and have their coding sequences in our possession, the question is whether we can use this to gain yet greater insight into how photosynthesis takes place and perhaps also perturb it in a beneficial way. What will be considered here is how transgenic plants could perhaps be used to accomplish these objectives. Some of the techniques involved will be described first, followed by a discussion of the type of change that we might wish to make.


Transgenic Plant Transit Peptide Selectable Marker Gene Ribulose Bisphosphate Thylakoid Lumen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Back, E., Burkhart, W., Mayer, M., Privalle, L., and Rothstein, S., 1988, Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction, Mol. Gen. Genet., 212:20–26.PubMedCrossRefGoogle Scholar
  2. Bevan, M., and Goldsbrough, A., 1988, Design and use of Agrobacterium transformation vectors, in: “Genetic Engineering. Principles and Methods” J. K. Setlow and A. Hollaender, eds., Plenum Publishing Co., New York, pp. 123–140.Google Scholar
  3. Boynton, J. E., Gillham, N. W., Harris, E. H., Hosier, J. P., Johnson, A. M., Jones, A. R., Randolf-Anderson, B. L., Robertson, D., Klein, T. M., Shark, K. B., and Sanford, J. C., 1988, Chloroplast transformation in Chlamydomonas with high velocity microprojectiles, Science, 240:1534–1538.PubMedCrossRefGoogle Scholar
  4. Deblaere, R., Reynaerts, A., Höfte, H., Hernalsteens, J.-P., Leemans, J., and van Montagu, M., 1987, Vectors for cloning in plant cells, Methods in Enzymol., 153:277–292.CrossRefGoogle Scholar
  5. De Block, M., Schell, J., and van Montagu, M., 1985, Chloroplast transformation by Agrobacterium tumefaciens, EMBQ J., 4:1367–1372.Google Scholar
  6. Duan, X., and Chen, S., 1985, Variation of the characters in rice (Oryza sativa) induced by foreign DNA uptake, China Agric. Sci., 3:6–9.Google Scholar
  7. Ecker, J. R., and Davis, R. W., 1986, Inhibition of gene expression in plant cells by expression of antisense RNA, Proc. Natl. Acad. Sci. USA, 83:5372–5376.PubMedCrossRefGoogle Scholar
  8. Fromm, M. E., Taylor, L. P., and Walbot, V., 1985, Expression of genes transferred into monocot and dicot plant cells by electroporation, Proc. Natl. Acad. Sci. USA, 82:5824–5828.PubMedCrossRefGoogle Scholar
  9. Gatenby, A. A., Lubben, T. H., Ahlquist, P., and Keegstra, K., 1988, Imported large subunits of ribulose bisphosphate carboxylase/oxygenase, but not imported β-ATP synthase subunits, are assembled into holoenzyme in isolated chloroplasts, EMBO J., 7:1307–1314.PubMedGoogle Scholar
  10. Haseloff, J. and Gerlach, W. L., 1988, Simple RNA enzymes with new and highly specific endoribonuclease activities, Nature 344:585–591.CrossRefGoogle Scholar
  11. Hayford, M. B., Medford, J. I., Hoffman, N. L., Rogers, S. G., and Klee, H. J., 1988, Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases, Plant Physiol., 86:1216–1222.PubMedCrossRefGoogle Scholar
  12. Heinrich, R. and Rapoport, T. A., 1974, A linear steady state treatment of enzymatic chains, Eur. J. Biochem, 42:107–120.PubMedCrossRefGoogle Scholar
  13. Jones, T. W. A., Pichersky, E., and Gottlieb, L. D., 1986a, Enzyme activity in EMS-induced null mutations of duplicated genes encoding phosphoglucose isomerase in Clarkia, Genetics 113:101–114.Google Scholar
  14. Jones, T. W. A., Gottlieb, L. D., and Pichersky, E., 1986b, Reduced enzyme activity and starch level in an induced mutant of chloroplast phosphoglucose isomerase, Plant Physiol., 81:367–371.CrossRefGoogle Scholar
  15. Jordan, D. B., and Ogren, W. L., 1981, Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase, Nature, 291:513–515.CrossRefGoogle Scholar
  16. Kacser, H., and Burns, J. A., 1973, Control of flux, Symp. Soc. Exp. Biol., 27:65–107.PubMedGoogle Scholar
  17. Kacser, H., and Porteous, J. W., 1987, Control of metabolism: what do we have to measure?, TIBS, 12:5–14.Google Scholar
  18. Karlin-Neumann, G. A., and Tobin, E. M., 1986, Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid framework, EMBO J., 5:9–13.PubMedGoogle Scholar
  19. Keegstra, K., and Bauerle, C., 1988, Targeting of proteins into chloroplasts, BioEssays, 9:15–19.PubMedCrossRefGoogle Scholar
  20. Keys, A. J., 1986, Rubisco: its role in photorespiration, Phil. Trans. Roy. Soc. Lond. B, 313:325–336.CrossRefGoogle Scholar
  21. Kimball, B. A., 1983, Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations, Agronomy J., 75:779–788.CrossRefGoogle Scholar
  22. Kirwin, P. M., Elderfield, P. D., Robinson, C., 1987, Transport of proteins into chloroplasts. Partial purification of a thylakoidal processing peptidase involved in plastocyanin biogenesis, J. Biol. Chem., 262:16386–16390.PubMedGoogle Scholar
  23. Kruckeberg, A. L., Neuhaus, H. E., Feil, R., Gottlieb, L., and Stitt, M., 1988, Reduced activity of photophoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. I. Impact on mass action ratios and fluxes to sucrose and starch, In press.Google Scholar
  24. Lubben, T. H., Theg, S. M., and Keegstra, K., 1988, Transport of proteins into chloroplasts, Photosyn. Res., 17:173–194.CrossRefGoogle Scholar
  25. Luo, Z.-X., and Wu, R., 1988, A simple method for the transformation of rice via the pollen-tube pathway, Plant Mol. Biol. Rep. 6:165–174.CrossRefGoogle Scholar
  26. McCabe, D. E., Swain, W. F., Martineil, B. J., and Christou, P., 1988, Stable transformation of soybean (Glycine max) by particle acceleration, BioTechnology, 6:923–926.CrossRefGoogle Scholar
  27. Mathias, R. J., 1987, Plant microinjection techniques, in: “Genetic Engineering” Vol. 9, J. K. Setlow, ed., Plenum Publishing Co., New York, pp. 199–227.CrossRefGoogle Scholar
  28. Melchers, L. S., and Hooykaas, P. J. J., 1987, Virulence in Agrobacterium, Oxford Surveys Plant Mol. Cell Biol., 4:167–220.Google Scholar
  29. Nasyrov, Y. S., 1978, Genetic control of photosynthesis and inproving of crop productivity, Ann. Rev. Plant Physiol., 29:215–237.CrossRefGoogle Scholar
  30. Nelson, C. J., 1988, Genetic associations between photosynthetic characteristics and yield: Review of evidence, Plant Physiol. Biochem., 26:543–554.Google Scholar
  31. Neuhaus, G., Spangenberg, G., Mittelsten Scheid O., and Schweiger, H.-G., 1987, Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryos, Theor. Appl. Genet., 75:30–36.CrossRefGoogle Scholar
  32. Pain, D., Kanwar, Y.S., and Blobel, G., 1988, Identification of a receptor for protein import into chloroplasts and its localization to envelope contact zones, Nature, 331:232–237.PubMedCrossRefGoogle Scholar
  33. Parry, M. A. J., Schmidt, C. N. G., Cornelius, M. J., Millard, B. N., Burton, S., Gutteridge, S., Dyer, T. A., and Keys, A. J., 1987, Variation in properties of ribulose-1,5-bisphosphate carboxylase from various species related to differences in amino acid sequences, J. Exp. Bot., 38:1260–1271.CrossRefGoogle Scholar
  34. Paszkowski, J., Shillito, R. D., Saul, M., Mandak, V., Hohn, T., Hohn, B., and Potrykus, I., 1984, Direct gene transfer to plants, EMBO J., 3:2717–2722.PubMedGoogle Scholar
  35. Pettersson, G., and Ryde-Pettersson, U., 1988, A mathematical model of the Calvin photosynthesis cycle, Eur. J. Biochem., 175:661–672.PubMedCrossRefGoogle Scholar
  36. Potrykus, I., Shillito, R. D., Saul, M. W., Paszkowski, J., 1985, Direct gene transfer. State of the art and future potential, Plant Mol. Biol. Rep., 3:117–128.CrossRefGoogle Scholar
  37. Raines, C. A., Lloyd, J. C., Longstaff, M., Bradley, D., and Dyer, T. A., 1988, Chloroplast fructose-1,6-bisphosphatase: the product of a mozaic gene, Nucleic Acids Res. 16:7931–7942.PubMedCrossRefGoogle Scholar
  38. Reich, T. J., Iyer, V. N., and Miki, B. L., 1986, Efficient transformation of alfalfa protoplasts by intranuclear microinjection of Ti plasmids, BioTechnology 4:1001–1004.CrossRefGoogle Scholar
  39. Rhodes, C.A., Pierce, D. A., Mettler, I. J., Mascarenhas, D., and Detmer, J. J., 1988, Genetically transformed maize plants from protoplasts, Science, 240:204–207.PubMedCrossRefGoogle Scholar
  40. Rogers, S. G., Klee, H. J., Horsch, R. B., and Fraley, R. T., 1987, Improved vectors for plant transformation: Expression cassette vectors and new selectable markers, Methods in Enzymol., 153:253–277.CrossRefGoogle Scholar
  41. Schell, J., 1988, Transfer of T-DNA from Agrobacterium into plants, Sym. Soc. Gen. Microbiol., 43:355–365.Google Scholar
  42. Schmidt, G. W., and Mishkind, 1986, The transport of proteins into chloroplasts, Ann. Rev. Biochem., 55:879–912.PubMedCrossRefGoogle Scholar
  43. Shestakov, S. V., and Reaston, J., 1987, Gene-transfer and host-vector systems of cyanobacteria, Oxford Surveys Plant Mol. Cell Biol. 4:137–166.Google Scholar
  44. Smeekens, S., and Weisbeek, P., 1988, Protein transport towards the thylakoid lumen: post-translational translocation in tandem, Photosyn. Res., 16:177–186.CrossRefGoogle Scholar
  45. van der Krol, A. R., Lenting, P. E., Veenstra, J., van der Meer, I. M., Koes, R. E., Gerats, A. G. M., Mol, J. N. M., and Stuitje, A. R., 1988, An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation, Nature, 333:866–869.CrossRefGoogle Scholar
  46. von Heijne, G., 1986, Mitochondrial targeting sequences may form amphiphilic helixes, EMBO J., 5:1335–1342.Google Scholar
  47. Walker, D. A., Leegood, R. C., and Sivak, M. N., 1986, Ribulose bisphosphate carboxylase-oxygenase: its role in photosynthesis, Phil. Trans. Roy. Soc. Lond. B, 313:305–324.CrossRefGoogle Scholar
  48. Woodrow, I. E., and Berry, J. A., 1988, Enzymatic regulation of photosynthetic CO2 fixation in plants, Ann. Rev. Plant Physiol. Plant Mol. Biol., 39:533–594.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Tristan A. Dyer
    • 1
  1. 1.Institute of Plant Science Research (Cambridge Laboratory)CambridgeUK

Personalised recommendations